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ABSTRACT 

Biological terrorism is a threat to the security and well-being of the United States.  

It is critical to detect the presence of these attacks in a timely manner, in order to provide 

sufficient and effective responses to minimize or contain the damage inflicted.  

Syndromic surveillance is the process of monitoring public health-related data and 

applying statistical tests to determine the presence of a disease outbreak in the observed 

system. 

Our research involved a comparative analysis of two multivariate statistical 

methods, the multivariate CUSUM (MCUSUM) and the multivariate exponentially 

weighted moving average (MEWMA), both modified to only look for increases in 

disease incidence.  While neither of these methods is currently in use in a biosurveillance 

system, they are among the most promising multivariate methods for this application.   

Our analysis was based on a series of simulations using synthetic syndromic 

surveillance data that mimics various types of background disease incidence and 

outbreaks.  We found that, similar to results for the univariate CUSUM and EWMA, the 

directionally-sensitive MCUSUM and MEWMA perform very similarly.   
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EXECUTIVE SUMMARY 

Syndromic surveillance is the process of prospectively monitoring health data in 

order to alert public health officials to a suspected increase in disease incidence in the 

general population as soon as possible.  Prior to the advent of syndromic surveillance, 

public health surveillance had generally been limited to retrospectively analyzing medical 

data.   However, the retrospective analyses often proved to be too time-consuming, 

failing to signal an alert within a reasonable time period.  Timely alarms may help 

prevent spread of the disease and has the potential to significantly improve effective 

response to an outbreak or bioterrorism attack, particularly if the disease is contagious.  

The main goal when using these methods is to detect outbreaks as quickly as possible, in 

order to optimize the response time for the public health officials.   

In an effort to reduce the delay time, public health organizations have begun to 

implement syndromic surveillance systems that are intended to provide for earlier 

detection, often applying existing statistical process control (SPC) methods such as the 

cumulative sum (CUSUM) and the exponentially weighted moving average (EWMA) 

control charts.  These control charts monitor the distribution of a test statistic and signal 

when an out-of-control threshold has been exceeded.  While univariate versions of the 

CUSUM and EWMA methods are also viable analysis techniques in syndromic 

surveillance, this thesis concentrates on evaluating a multivariate CUSUM (MCUSUM) 

and a multivariate EWMA (MEWMA), both modified to only look for increases in 

disease incidence.  While neither of these methods is currently in use in a biosurveillance 

system, they are among the most promising multivariate methods for this application.   

This thesis compares and contrasts the relative performance of the directionally 

sensitive MCUSUM and MEWMA on simulated data designed to mimic various types of 

background disease incidence and outbreaks.  Syndromic surveillance data is inherently 

non-stationary and positively correlated – characteristics which do not coincide with 

traditional . . .i i d  SPC assumptions.  To account for these characteristics, the MCUSUM 

and MEWMA are applied to the residuals of an adaptive regression with a sliding 

baseline.     
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In order to appropriately compare the two, each method’s various parameters (   

for MEWMA and k  for MCUSUM) were first determined such that both methods 

performed as similarly as possible under the standard . . .i i d  assumptions.  Following 

recommendations in the literature, we set 0.2   throughout all the simulations and 

through an iterative process found the k  for which the MCUSUM performed as similarly 

to the MEWMA with 0.2  as possible ( 0.74k  ).      

Once the methods’ parameters were determined, control limits were chosen to 

produce a certain “in-control” average run length (ARL) or average time to first signal 

(ATFS), denoted by 0ARL  or 0ATFS .  That is, the thresholds were set so that the two 

methods performed equally well in the absence of an outbreak.  This guaranteed a fair 

comparison of the two methods when evaluating their performance at detecting various 

types of outbreaks.  For the simulations in this study, we found control limits that set the 

in-control ARL and ATFS values are within one day of a 100 day target.  

The accepted metric in SPC practice is the ARL, which measures the average 

number of time units it takes before a method signals an alarm.  However, in the context 

of syndromic surveillance, the transient nature of disease outbreaks often precludes the 

use of the ARL  metric.  That is, in the industrial SPC world, a common and reasonable 

assumption is that once an “out-of-control” condition occurs, it persists until a detection 

method signals.  Hence, using the “out-of-control” ARL is an effective metric for 

comparing the relative performance of methods to detect various out-of-control 

conditions.  However, in syndromic surveillance, disease outbreaks start, peak, and then 

ultimately subside and go away.  Thus, it is important to also assess performance in terms 

of a procedure’s ability to detect an outbreak within the period of the outbreak. 

In this study, two metrics are used to assess the methods’ performance on 

syndromic surveillance data.  The first is the percentage of the time that a method does 

not detect during an outbreak period, which provides insight regarding the utility of the 

signals.  If the detections occur after the outbreak has ended, then the method is not 

providing a useful signal.  The second metric is the conditional average time to first 

signal (ATFS) given that the method did detect during the outbreak period, which 

illustrates how fast the method is signaling when it detects an outbreak.   



 xix 

The main simulations in this thesis were conducted on 18 cases with varying 

amplitude, standard deviation, and outbreak peak. These cases generated ATFS, ATFS 

given a true signal, and Percent Miss statistics along with their respective standard errors.  

We found that, similar to results for the univariate CUSUM and EWMA, the 

directionally-sensitive MCUSUM and MEWMA perform almost identically under all of 

the 18 cases evaluated.  While there seems to be no performance advantage of one 

method over the other, the MEWMA is preferred for procedural simplicity as compared 

to the MCUSUM.    
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I. INTRODUCTION  

A. BACKGROUND INFORMATION 

Syndromic surveillance is the process of monitoring health data in order to alert 

public health officials to a suspected increase in disease incidence in the general 

population as soon as possible. Traditional biosurveillance methods have been limited to 

retrospectively analyzing medical and public health data to verify the existence of a 

disease outbreak (Shmueli 2006). Via these traditional methods, the process of collecting 

and analyzing can take days, even weeks, before definitively concluding that an outbreak 

has occurred and alerting officials. The timeliness of the alarm may help prevent spread 

of the disease and has the potential to significantly improve effective response to an 

outbreak or bioterrorism attack, particularly if the disease is contagious.  It may also 

improve medical response to the way a disease is treated, especially diseases with an 

exponentially decreasing survival probability as time elapses. For example, the 

probability of surviving anthrax if caught in the first three days compared to a diagnosis 

beyond the three day threshold drops significantly (Goldenberg 2002).  

In recent times, public health organizations have begun augmenting their 

retrospective biosurveillance processes with prospective methods that are intended to 

provide for earlier detection, minimizing the lag between disease outbreak and an 

appropriate containment response. These new biosurveillance efforts apply control chart 

methods borrowed from statistical process control (SPC), such as the cumulative sum 

(CUSUM) and the exponentially weighted moving average control chart (EWMA). These 

control charts are used to detect changes in the distribution of a test statistic, and signal 

when a pre-determined out-of-control threshold has been exceeded, which provides some 

evidence that an outbreak has occurred (Joner 2006). See Montgomery (2001) for a 

review of the fundamentals of statistical process control, including descriptions of the 

standard CUSUM and EWMA procedures.  For a review of the use of control charts in 

the broader context of health care and public health surveillance, see Woodall (2006).  
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When monitoring for outbreaks in a single region or a single time series, the 

univariate EWMA and the one-sided univariate CUSUM can be effective methods for 

achieving timely detections.  Woodall and Ncube (1985) first proposed the application of 

simultaneous univariate CUSUMs in a multivariate application. Multiple simultaneous 

univariate procedures have the advantages of ease of implementation and interpretation, 

but then can be less sensitive to some types of changes when compared to multivariate 

methods.  Thus, when the data are available from multiple regions or multiple time series, 

a multivariate method has the potential to be more effective because it uses information 

from multiple data streams or regions.   

 

B. PROBLEM STATEMENT 

This thesis compares and contrasts the relative performance of the multivariate 

CUSUM (MCUSUM) and multivariate EWMA (MEWMA) methods proposed by 

Fricker (2007) and Joner et al. (2006), respectively.  While neither of these methods is 

currently in use in a syndromic surveillance system, they are among the most promising 

multivariate methods for such applications.  The comparisons were conducted using 

simulated syndromic surveillance data in a variety of scenarios designed to mimic the 

main features of real syndromic surveillance data.  The goal of this research was to gain 

some insight into the relative performance of the two methods, particularly whether there 

are some scenarios under which one method is to be preferred over another. 

 

C. THESIS OUTLINE 

The thesis is organized as follows:  In Chapter II, the standard MCUSUM and 

MEWMA methods are described, including the modifications necessary to make them 

directionally sensitive.  Chapter III describes how the procedures’ parameters were 

determined so that both methods perform similarly under the standard . . .i i d  assumptions.  

Chapter IV describes how the simulated background disease incidence counts and 

outbreaks were generated. Chapter V defines the set of simulation scenarios and presents 

the results from the comparative analysis.  Chapter VI concludes with a summary of the 

results and offers some recommendations on the use of performance metrics as applied to 
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syndromic surveillance.  Appendix A includes all of the MATLAB code used for the 

simulations in this thesis.  Appendix B is a collection of all results plots from the main 

simulations.  Appendix C shows the Microsoft Excel spreadsheet that we used to assess 

the statistical significance of the observed differences between the two methods. 
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II. DESCRIPTION OF THE MULTIVARIATE METHODS 

The one-sided univariate CUSUM control chart can be effective for the timely 

detection of an outbreak in a single region.  However, when data streams are available 

from multiple regions, a multivariate method has the potential to be more effective.  Such 

a multivariate monitoring method appropriately combines information from several 

regions into a single control chart.  Multiple univariate procedures have the advantages of 

ease of implementation and interpretation, but may be less sensitive to certain changes as 

compared to multivariate forms (Fricker 2006). The multivariate approach also avoids 

multiple-testing, which can inflate the false-alarm rate, as well as increase the power to 

detect triggers that the univariate charts were not able to pick up (Shmueli 2006).  

Many multivariate methods are directionally invariant, meaning that they are 

designed to detect changes in a mean vector equally well in all directions (Fricker 2006). 

While directional invariance is important when the objective is to detect a departure in 

any direction from a specific vector, the primary goal in syndromic surveillance is to 

detect increases in one or more disease incidence counts.  Simply put, in syndromic 

surveillance applications, it is only relevant to flag increases; there is no need to signal if 

the disease count is lower than expected. Therefore, in this research we compare and 

contrast two directional multivariate methods, the directionally sensitive multivariate 

CUSUM from Fricker (2007) and a directional MEWMA control chart from Joner et al. 

(2006).   

The basic methods are described below, how they were applied to the syndromic 

surveillance data is described in Chapter III, Section C, and the MATLAB code 

implementing the two methods in the simulations is contained in Appendix A. 

 

A. MCUSUM 

Suppose that we observe  1 2, , ,i pX X XX  , a p -dimensional set of 

observations at time i .  In the syndromic surveillance case, this may be, for example, a 
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vector of chief complaint counts at the p  different hospitals in the area.  Crosier (1988) 

introduced a multivariate CUSUM that at each time i  calculates the statistic iS  as 

  1( ) 1 / ,  if i i i i ik C C k    S S X μ ,  (2.1) 

where μ  is the target vector representing the mean of the process when it is “in-control,” 

k is a predetermined statistical distance,  

 
1

1 1( ) ' ( )i i i i iC 

     S X μ Σ S X μ , (2.2) 

and Σ  is the covariance matrix of the “in-control” observation streams.  If kCi  , the 

process resets 
i S 0 .  The MCUSUM starts with 

0 S 0  and sequentially calculates  

 
1'i i iY  S Σ S . (2.3) 

The MCUSUM triggers an alarm when iY  exceeds a pre-determined threshold h  

that is chosen to achieve a desired in-control average time to first signal (ATFS). Crosier 

states that selecting an appropriate parameter k  “[i]n the univariate [CUSUM] case, the 

quantity 1i i  S X μ  is shrunk towards 0  by k  standard deviations. If this is to hold for 

the multivariate case, k must satisfy 1 2' k k Σ k  – that is, k must be of length k , where 

length is defined by using the covariance matrix Σ ” (Crosier 1988). 

Fricker (2007) modified Crosier’s MCUSUM to make it directionally sensitive to 

increases in one or more dimensions.  Directionality is achieved by bounding each 

component of the of the cumulative sum vector in Equation (2.1) by zero, much like the 

univariate CUSUM is reflected at zero.  That is, when iC k , replace Equation (2.1) with 

  , 1, ,max 0,( ) 1 / ,  i j i j i j j iS S X k C
       (2.4) 

for each component of the 
iS vector, 1,...,j p . 

 

B. MEWMA 

Lowry et al. (1992) introduced an alternative to the MCUSUM called the 

multivariate exponentially weighted moving average (MEWMA).  It is a simple 
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expansion of the univariate EWMA through the use of vectors.  Joner et al. (2006) 

subsequently modified the MEWMA to make it directionally sensitive. 

As with the MCUSUM, assume we observe  1 2, , ,i pX X XX  .  Denote the in-

control mean for iX  by the vector μ  and let Σ  be the covariance matrix.  Assume that μ  

and Σ  are known.  These quantities can be estimated from historical data.  Calculate 

 
    1[ 1 , ]   for 0

                                                    for 0

i i

i

i

i

  
    

 


max X μ Z 0
Z

0
, (2.5) 

where the max  operator is applied to the argument vectors component by component, 

effectively bounding each element of iZ  by 0.  iZ  is essentially a weighted average of 

the current observation standardized around 0  and the previous Z  statistic.  Since all 

elements of iZ  are bounded by zero, the resulting chart will tend to signal only as a result 

of increases in the observed incidence rate (Joner 2006).  The parameter 0   is known 

as the smoothing parameter and   controls the weight assigned to the new observation 

vector. 

In Joner et al. (2006), the covariance matrix for iZ  is shown to be 

 

 
2

1 1
.

2i

i
 



  
 


ZΣ Σ  (2.6) 

Taking the limit as i  ,  

 .
2







ZΣ Σ  (2.7) 

ZΣ  is then used to calculate the test statistic MEWi  where 

 
1MEW .i i i

 ZZ Σ Z  (2.8) 

The MEWMA process signals an alarm whenever MEWi  exceeds a 

predetermined threshold value h  which is set to achieve a desired ATFS.  If MEWi  does  
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not exceed h , then the MEWMA process iterates through the next time step with a new 

observation vector, recalculating the test statistic, and continuing until such time as the 

MEWi h . 

The MEWMA (and MCUSUM) assumes that the observations are generated by a 

p -dimensional multivariate normal distribution,  ,pN μ Σ  over the entire period of  

observation.  In particular, it assumes that the mean vector μ  does not change over time 

(i.e., it is “stationary”), an assumption that generally does not apply to syndromic 

surveillance.   

To account for the non-stationary nature of syndromic surveillance data, the 

MCUSUM and MEWMA are not applied to the raw data.  Rather, they are applied to the 

standardized residuals from an “adaptive regression with sliding baseline” (Burkom et al. 

2006) designed to first remove any systematic trends from the data (such as seasonal 

fluctuations in disease incidence).   

 

C.  ADAPTIVE REGRESSION 

Systematic trends, such as seasonal cycles and other patterns, are a natural 

characteristic of syndromic surveillance data.  Not only are the data non-stationary, but 

the trends also tend to occur over all of the dimensions in the scenario, showing that 

positive correlation exists.  The non-stationary, correlated nature of syndromic 

surveillance does not coincide with the traditional . . .i i d  SPC assumptions, which is to say 

that these methods, as they stand, assume that the data do not contain such trends (Fricker 

2006). 

One solution to this is to perform an adaptive regression on the data to forecast 

the next day’s observation and then apply the MEWMA and MCUSUM methods to the 

forecast errors.  Examples of this and similar approaches in the literature include 

Brillman et al. (2005), who apply the CUSUM to prediction errors; the CDC’s cyclical 

regression models discussed in Hutwagner et al. (2003); log-linear regression models in 

Farrington et al. (1996); and time series models in Reis et al. (2003).  See Shmueli (2006) 

for additional discussion of the use of regression and time series methods for syndromic 
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surveillance and Burkom et al. (2006) for a comparison of two regression-based methods 

and an exponential smoothing method using adaptive regression in the context of 

syndromic surveillance.  Also see Lotze et al. (2006) for a detailed discussion of 

preconditioning applied to syndromic surveillance data. 

One option for handling the systematic component in syndromic surveillance data 

is to use the “adaptive regression model with sliding baseline” of Burkom et al. (2006). It 

is parameterized as follows:  Let iX  be the observation (say chief complaint count on day 

i ).  These observations are then regressed against time, for some fixed number of time 

periods n  (Burkom et al. used an 8-week period, 56n  ).  Then the regression would 

look like 

 0 1iX i      (2.9) 

where 0 is an intercept term, 1 is the slope, and  is the error term.  The model is fit using 

the usual ordinary least squares approach. The estimates for each time period 

,..., ( 1)i i n  , where time is always relative to the current observation, are 

 0 1
ˆ ˆˆ ,iX i    (2.10) 

where 0̂ is the estimated intercept and 1̂  is the estimated slope.  The forecast error for 

time 1i   is 

  1 1 0 1
ˆ ˆ 1 .i ir X i  

    
 

 (2.11) 

 

Within the framework of syndromic surveillance, at each time i we refit the models and, 

if the models fit well, then the ir s should be “small” according to mean square deviation. 

We extend this approach for multivariate data by applying the regression model in 

Equation (2.9) to each dimension j  independently and then calculating the respective 

forecast errors as shown in  Equations (2.12), (2.13), and (2.14). 

 , 0, 1,i j j j jX i      (2.12) 

 , 0, 1,
ˆ ˆˆ

i j j jX i    (2.13) 
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  1, 1, 0, 1,
ˆ ˆ 1i j i j j jr X i  

    
 

 (2.14) 

Dunfee and Hegler (2007) studied the performance of adaptive regression in one 

dimension to determine “optimal” sliding baselines  n  for different background 

scenarios using a tool similar to the data generation and adaptive regression tool 

described in Appendix A.  The “optimal” sliding baselines were chosen by inspecting a 

plot of the mean squared deviation from the adaptive regressions over various n  values 

and choosing the smallest n  that achieved close to the minimum mean squared deviation. 

Since our multivariate extension is a sequence of independent adaptive regressions in 

each dimension, we apply these “optimal” sliding baseline values to the simulation cases 

described in Chapter IV. 

 

D. MODIFIED MULTIVARIATE METHODS 

As was previously described, the MCUSUM and MEWMA are applied to the 

residuals from the adaptive regression models in order to remove the systematic trends 

from the data.  Figure 1 illustrates this transformation from syndromic surveillance 

counts to residuals, where on the left side in Figure 1 the systematic trends are clearly 

evident in the data but on the right side the residuals do not show any visual evidence of 

the trends.  The procedure for simulating syndromic surveillance data is described in 

Chapter IV, Section A. 
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Figure 1.   Transforming one year of syndromic surveillance data using adaptive 

regression – Parameters: 90  , 20A  , 10  , 35n   

The MCUSUM and MEWMA can now be applied to these residuals.  Assuming 

that there is enough historical data in place to regress over the “optimal” sliding baseline, 

the modified versions of the methods include the following sequence of events: 

 Observe the next day’s count. 

 Apply the multivariate adaptive regression technique to the data and 

calculate the residual value, ,i jr , for each dimension j , where i  is the 

current day. 

 Update the MCUSUM or MEWMA statistic using the current day’s 

residuals. 

 If the control limit threshold is exceeded, signal an alarm.  If the threshold 

is not exceeded, repeat the process. 

This modified version introduces a complication in implementing the methods.  

The methods are no longer run on the original data, so different input parameters are 

needed.  Both the MCUSUM and MEWMA require the in-control covariance matrix of 

the residuals as inputs.  Although the correlation is removed from the data after adaptive 

regression, the standard deviation of the residuals is slightly greater than the original 

standard deviation from the noise in the data.  In order to overcome this problem, we 
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estimate the standard deviation of the residuals by generating background disease 

incidence data (no outbreaks) and run the adaptive regression technique for many days.  

We used the sample standard deviation from these residuals, ˆ
R , as an estimate of the 

true standard deviation.  The in-control covariance matrix input is now 2ˆ
R Σ I .  To 

accommodate for this change, we standardize the residuals by dividing each ,i jr  by ˆ
R .  

Instead of running the methods on  ,1 ,2 ,3 ,4, , ,i i i i ir r r r r , we will run them on 

 ,1 ,2 ,3 ,4
ˆ ˆ ˆ ˆ/ , / , / , /i i R i R i R i Rr r r r r     on day i . 

The MATLAB code for these modified procedures is in Appendix A. 
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III. METHOD PARAMETERS AND COMPARISON METRICS 

Before it is possible to compare the performance of the MCUSUM and the 

MEWMA, this chapter describes how the methods’ various parameters were determined.  

It also describes the metrics used to compare and contrast the methods’ performance in 

the syndromic surveillance problem. 

 

A.  CHOOSING PARAMETERS   AND k  

In order to appropriately compare the MEWMA to the MCUSUM, we determined 

the parameter settings such that both methods performed as similarly as possible under 

the standard . . .i i d  assumptions.  Given these parameter settings, we then compared and 

contrasted their performance under various syndromic surveillance scenarios (Chapter 

V).  Since we will subsequently use these methods to monitor the forecast residuals from 

adaptive regression models, we expect that the residuals of good regression models 

should be approximately independently normally distributed.  Thus, this initial work 

helped us to understand how to apply these methods in this application. 

For these simulations, the data was modeled as independent identically distributed 

multivariate ( , )N 0 Σ  observations (in four dimensions).  The out-of-control conditions 

were modeled as a uniform increase in the mean vector across all four dimensions.  

Because these assumptions do not include the characteristics of public health data, we 

used the ARL metric to compare performance.   

Following the recommendation of Joner and Montgomery, we set 0.2   

throughout all of the simulations (2006; 2001) and then control limits were determined so 

that the MEWMA achieved an in-control average run length  ARL  of 100 days.  The 

ARL measures the average number of time units it takes before a method signals an 

alarm.  We chose this in-control ARL  value for both methods standardizing them for our 

controlled comparisons.  We assume the methods will have similar relative performance 

results regardless of the specific value of the in-control ARL .  Depending upon the 

context of the observed system in the real world, the in-control ARL  can be fixed to 
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achieve any desired false alarm rate.  For a discussion on setting control limit thresholds, 

see Chapter III, Section B.  Setting 0.2   is consistent with the recommended range for 

  for the univariate EWMA (see Montgomery 2001, for example).  Similarly, given a 

value of k , control limits can be chosen for the MCUSUM to achieve an in-control ARL  

of 100 days.  The issue then was to find the value of k  such that the MCUSUM 

performed as similarly to the MEWMA as possible. 

After initially trying k  values ranging from 0.2k   to 1.8k  , as shown in 

Figure 2 we determined that 0.74k   gives the closest MCUSUM ARL performance to 

the MEWMA with 0.2  , where we set all of the components of the k  vector equally 

(e.g., for 0.74k   we set  0.37,.037,0.37,0.37k ). 

 

Figure 2.   Plot of the relative ARL performance for multiple MCUSUM instances 

against the MEWMA with 0.2   illustrating evidence that 0.74k   

makes the MCUSUM perform the closest to the MEWMA.  
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As Figures 2 and 3 show, for 0.74k  , the MCUSUM signals faster than the 

MEWMA for small values of the out-of-control mean but signals much slower as the 

magnitude of the out-of-control mean increases.  Conversely, as k  increases from 0.74, 

the MCUSUM begins to signal slower than the MEWMA for small values of the out-of-

control mean but signals much faster as the magnitude of the out-of-control mean 

increases. 

Thus, for the purposes of our simulation comparisons in Chapter V, we set 

0.2   in the MEWMA and 0.74k   in the MCUSUM. 

 

Figure 3.   A second plot of the relative ARL performance for multiple MCUSUM 

instances against the MEWMA with 0.2   illustrating evidence that 

0.74k   makes the MCUSUM perform the closest to the MEWMA.  This 

plot illustrates the behavior of the MCUSUM for more extreme k  values.  
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B. SETTING THRESHOLDS 

Application of the MEWMA and MCUSUM requires setting specific threshold 

values or control limits, h .  The thresholds are chosen to produce a certain “in-control” 

ARL or ATFS, denoted by 0ARL  or 0ATFS , similar to how “a researcher chooses a 

critical value corresponding to a certain  level in a hypothesis test” (Joner 2006).  A 

syndromic surveillance process is considered “in-control” in SPC terms when no 

outbreak is present.  The concept of being “in-control” is really a misnomer in the 

syndromic surveillance setting since no control is actually exhibited over the background 

disease incidence (Fricker and Rolka 2006), but the terminology is used to draw a parallel 

to the SPC literature.   

For a given scenario, the thresholds are set so that the two methods perform 

equally well in the absence of an outbreak – that is, they are set to have equal 0ARL s  or 

0ATFS s .  This guarantees a fair comparison of the two methods when evaluating their 

performance at detecting various types of outbreaks.  Once the thresholds are determined 

that result in equal 0ARL s  or 0ATFS s  for a given scenario, the methods’ ability to detect 

various outbreaks are compared in terms of ATFS given a true signal and percent miss.  

In this work, the thresholds were determined empirically as follows.  For a 

particular method and data scenario, choose an initial guess for h  and run the method’s 

algorithm m  times.  Using the output 0 0ARL / ATFS  estimate from this initial trial, 

iteratively adjust the threshold h , re-running the method until a desired 0 0ARL / ATFS  is 

achieved.  Larger values of m  will return more precise estimates of the 0 0ARL / ATFS .  

For the simulations in this study, we found control limits that set the in-control ARL and 

ATFS values are within one day of a 100 day target, using m  large enough such that the 

standard error of these estimates were less than one day.  

 

C. PERFORMANCE METRICS 

The syndromic surveillance literature measures the performance of detection 

measures in terms of sensitivity, specificity, and timeliness (Shmueli 2006).  In the 
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context of syndromic surveillance, holding all else constant, timely detection of a disease 

outbreak is the most important dimension.  Specifically, the main goal when using these 

methods is to detect outbreaks as quickly as possible, in order to optimize the response 

time for the public health officials.   

A standard measure of performance in the SPC literature is the ARL .  While the 

ARL  metric was used in the initial comparisons in order to determine   and k , in the 

context of syndromic surveillance, the problem with using the ARL as a measure of 

performance is the transient nature of disease outbreaks.  That is, in the industrial SPC 

world, a common and reasonable assumption is that once an “out-of-control” condition 

occurs, it persists until a detection method signals.  Hence, using the “out-of-control” 

ARL is an effective metric for comparing the relative performance of methods to detect 

various out-of-control conditions.  However, in syndromic surveillance, disease outbreaks 

start, peak, and then ultimately subside and go away.  Thus, it is important to also assess 

performance in terms of a procedure’s ability to detect an outbreak within the period of 

the outbreak. 

Because of this, two metrics are used to assess the methods’ performance on 

syndromic surveillance data.  The first is the percentage of the time that a method does 

not detect during an outbreak period, which is referred to herein as “percent miss.”  This 

measure provides insight regarding the utility of the signals.  If the detections occur after 

the outbreak has ended, then the method is not providing a useful signal.  The second 

metric is the conditional average time to first signal (ATFS) given that the method did 

detect during the outbreak period (also referred to as ATFS given a true signal).  This 

measure illustrates how fast the method is signaling when it detects an outbreak.  It is 

similar to the “average time to signal (ATS)” in the SPC literature, but because of the 

autocorrelation that is often present in syndromic surveillance data (which can and often 

does result in repeated alarms), we will only measure the time until first signals. 
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IV. MODELING PUBLIC HEALTH DATA 

A. BACKGROUND DISEASE INCIDENCE 

The background disease incidence behavior in real public health data exhibits 

some natural trends.  In the context of syndromic surveillance, we define this background 

behavior to be the “in-control” state of a system.  In attempting to describe this non-

stationary nature of real public health data, there are several candidate effects to consider.  

These include a long-term increase effect, a seasonal cycle effect, day-of-the-week 

effects, and even holiday effects (Shmueli 2006). 

Our model of this background behavior simulates daily counts through a 

simplified additive model.  In this model, the background disease incidence is 

characterized by a seasonal cycle around a baseline mean.  This cycle peaks during the 

winter season, between the months of December and February.  This winter peak is 

related to the seasonal recurrence of influenza, which we consider background behavior 

in the context of bioterrorism (Shmueli 2006).  In the model, this seasonal cycle is a 

sinusoid with a one year period.  Daily observations are based on a systematic component 

determined by the day in the cycle and the overall mean (baseline) and a stochastic 

component representing random noise in the data.  Because public health data are in the 

form of discrete counts, the generated observations are forced to be nonnegative integers.  

Specifically, an observation ,i jX  for day i  in dimension j  is modeled by  

   , ,max 0,i j i i jX Y        (4.1) 

where: 

   is the baseline value for the disease incidence (grand mean) 

 i  is the seasonal deviation from the baseline mean, calculated as 

 sin 2 / 365i A i   . A  is the amplitude parameter (maximum 

systematic deviation from  ) with 1i   corresponding to October 1.  This 

start date allows the peak of the cycle to occur during the winter. 

  ,i jY   is the random noise around the systematic component with 

   2

, ~ 0,i jY N   
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 x    is the ceiling function, which rounds x  up to the next largest integer.  

This is needed to incorporate the discrete nature of the counts in public 

health data. 

Some additional assumptions from the above description are: 

 Constant year length.  Years are always modeled as 365 days long.  

Extending this to account for leap years is an unnecessary complication 

that will not affect the results or conclusions. 

 No linear trends.  Growing or shrinking populations, or changes in health 

conditions, could result in linear (or other) trends in the disease incidence.  

A trend term is included in Equation (4.1) since, if the procedures can 

appropriately adjust for the seasonal component, it can also adjust for a 

linear trend. 

 No holiday or other such effects.  Holiday and day-of-the-week trends may 

be present in real syndromic surveillance data.  However, while these 

effects are not included in Equation (4.1) and not accounted for in this 

thesis, it would be relatively straightforward to extend these methods to 

account for these effects.  Furthermore, Dunfee and Hegler (2007) 

concluded that such effects had minimal to no consequence on the 

statistical methods and subsequently viewed as an unnecessary 

complication of the analysis.  

For a given day i , the observations for each data stream j  are generated 

independently of the others.  The correlation still exists in the data because all of the data 

streams have a common systematic component.  Throughout the simulations in this study, 

we always generate four streams of data.  Figure 4 illustrates a year of generated 

background disease incidence data using this model. 
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Figure 4.   An example of generated background disease incidence data with 

parameters: 90  , 20A  , 10   

 

B. MODELING DISEASE OUTBREAK BEHAVIOR 

In order to assess the relative performance of the methods in the context of 

syndromic surveillance, we define the out-of-control condition by the disease outbreak 

behavior.  We consider two candidates for outbreak behavior, namely, constant (e.g., Reis 

et al. 2003; Brillman et al. 2005) and linear (e.g., Goldenberg et al. 2002; Stoto et al. 

2006) increases to the incidence counts.   

Our outbreak model is parameterized by the starting day, the peak, and the 

duration of the outbreak.  Instead of modeling the out-of-control condition as a constant 

increase in the data (as in the initial simulations), our disease outbreaks are modeled by a 

linear increase in the data until the peak occurs, followed by a linear decrease throughout 

the rest of the outbreak period.  These outbreaks are assumed to be symmetric around the 

center of the outbreak period. 
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A systematic disease outbreak component, i , is included as another term in the 

additive model from Equation (4.1) so that the observation 
,i jX  for day i  in dimension j  

is  

   , ,max 0,i j i i i jX Y          (4.2) 

where 

 
1

1
2

1
,  is in the outbreak period        

2

0,  is outside the outbreak period

p

d

i

d
p i s i

i


 

 
 

  
    

  



 

 p  is the peak magnitude of the outbreak component. 

 d is the duration of the outbreak in days.  We will only consider outbreak 

durations of an odd number of days to eliminate the case of two 

consecutive peak days. 

 s  is the starting day of the outbreak. 

During the outbreak period, i  represents the systematic departure from the 

background disease incidence behavior.  Figure 5 illustrates the change in the i  

component for a particular instance of a disease outbreak. 

 

Figure 5.   An example outbreak with duration = 9 days, peak = 45, startday = 0 
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In the simulations, we will define the peak magnitude p in terms of a percentage 

  of the baseline, such that p    . 
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V. THE SIMULATIONS 

The main simulations in this study compare the relative performance of the 

modified MCUSUM and MEWMA methods over various background disease incidence 

behaviors and various outbreak magnitudes, as summarized in Table 1. 

 

 None Small Large 

A  0 20 80 

  n/a 10 30 

  10% 25% 50% 

 

Table 1.   Parameter Values for 90   

 

All simulations are conducted in MATLAB 7.3.0 (R2006b). 

 

A. CASES 

With a single background disease incidence baseline set to 90  , we developed 

eighteen simulation cases based on all combinations of the input parameters from Table 

1.  These cases are presented in Table 2. 
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Baseline Amplitude Data Sigma 

Outbreak 

Peak 

Sliding 

Baseline 

Estimate of 

Residual SD 

MEWMA 

ContLim 

MCUSUM 

ContLim 

Case   A    p  n  ˆ
R  MEWMAh  MCUSUMh  

1 90 80 30 45 30 30.11 3.28 4.64 

2 90 80 30 22.5 30 30.11 3.28 4.64 

3 90 80 30 9 30 30.11 3.28 4.64 

4 90 80 10 45 30 10.62 3.31 4.78 

5 90 80 10 22.5 30 10.62 3.31 4.78 

6 90 80 10 9 30 10.62 3.31 4.78 

7 90 20 30 45 40 31.46 3.26 4.6 

8 90 20 30 22.5 40 31.46 3.26 4.6 

9 90 20 30 9 40 31.46 3.26 4.6 

10 90 20 10 45 35 10.59 3.26 4.6 

11 90 20 10 22.5 35 10.59 3.26 4.6 

12 90 20 10 9 35 10.59 3.26 4.6 

13 90 0 30 45 45 31.29 3.27 4.62 

14 90 0 30 22.5 45 31.29 3.27 4.62 

15 90 0 30 9 45 31.29 3.27 4.62 

16 90 0 10 45 35 10.58 3.25 4.57 

17 90 0 10 22.5 35 10.58 3.25 4.57 

18 90 0 10 9 35 10.58 3.25 4.57 

Table 2.   Simulation Parameters 

 

The scenario parameters n , ˆ
R , MEWMAh , and MCUSUMh  are functions of the 

defined background behavior  , ,A  .  We determined the values of these parameters 

empirically, as follows: 

 n  - from the univariate work of Dunfee and Hegler (2007), 

 ˆ
R  - using adaptive regression on 800,000 days of background disease 

incidence data for each background scenario, as suggested in Chapter IV, 

Section C, 

 MEWMAh  and MCUSUMh  - using the method calibration technique described in 

Chapter II, Section D. 

In addition to the varying outbreak peaks  p , each case is evaluated over 

multiple outbreak durations.  Specifically, we ran each case over odd day outbreak 

durations from 3 – 15 days and generated plots to examine the relative performance of 

the methods as the outbreak duration changed. 
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B. SIMULATION SEQUENCE OF EVENTS 

In order to run the methods on simulated data we developed the following startup 

procedures: 

 Pick a uniformly distributed random start day in the seasonal cycle (1 to 

365).  Each time the simulation resets, a new start day is assigned.  This 

allows for the methods to run equally on all regions of the seasonal cycle. 

 Generate startup data for the number of days given by the “optimal” 

sliding baseline n .  This data is required before the adaptive regression 

technique can begin. 

 Begin applying the method as described in Chapter IV, Section C.  The 

outbreak begins 100 days after the method begins running.  This startup 

period effectively loads background disease behavior into the method’s 

memory. 

In addition, the following rules applied in our simulations: 

 If an alarm signals before the outbreak begins (i.e., during the startup 

period), reset all method statistics.  This alarm is not counted, because we 

are only concerned with comparing the methods’ performance during 

outbreak periods.  In other words, all statistics are collected conditional on 

the event that an outbreak has begun after an initial in-control startup 

period. 

 Begin counting days for output statistics on the first day of the outbreak. 

 Run the main sequence until the first signal occurs, and record the run 

length. 

 Each scenario is run for 2,500 replications. 

Using the recorded run lengths, we derived estimates of the ATFS, ATFS given a 

true signal, and Percent Miss statistics along with their respective standard errors. 

 

C. PERFORMANCE RESULTS 

The simulations show that the MEWMA and MCUSUM perform almost 

identically under all of the 18 cases we evaluated.  Figure 6 illustrates the results from 

simulation case 1. 
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(a) (b) 

Figure 6.   Plots for Case 1 simulation: (a) ATFS Given True Signal, (b) Percent Miss 

 

Using the hypothesis test described in Appendix C, we conclude that there is a 

statistical difference in the ATFS Given True Signal statistics.  On average, the MEWMA 

signals faster during the outbreak period, however this statistical significance is not 

practically significant.  In the case 1 simulation, the maximum difference in the ATFS 

Given True Signal statistic is 0.2693  days.  This difference is so small that the methods 

can be considered equivalent in practice.  This small statistical difference is present in all 

of the cases except cases 3, 9, and 15 (where 30   and 9p  ).  In these cases, the 

hypothesis test shows no difference at all between the two methods.   

In addition, it is important to note that the observed differences could simply be 

the result of some imprecision in how we set   and k .  Specifically, it is quite possible 

that a slight additional adjustment in k would result in statistical insignificance between 

the MEWMA and MCUSUM performance under this measure. 

Both methods performed even more similarly under the Percent Miss metric, with 

statistically significant differences occurring only under short outbreak durations.  Again, 

these are very small differences, but in all cases where a difference exists, it is the 

MEWMA that has a smaller Percent Miss estimate.  For a comprehensive listing of 

results plots and statistical difference calculations, see Appendix B and Appendix C, 

respectively. 
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Case 1 – 80A   

  

Case 7 – 20A   

  

Case 13 – 0A   

Figure 7.   Plots for cases 1, 7, and 13 (solid lines - MEWMA, dashed lines - 

MCUSUM).  All three cases have 90, 30,and 45p    , illustrating the 

invariance of method performance with respect to changes in the amplitude 

component. 
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Figure 7 illustrates that the adaptive regression procedure in the modified methods 

effectively removes the systematic component of the synthetic syndromic surveillance 

data.  For cases 1, 7, and 13 all of the parameters are fixed  90,  30,  45p     

except for the amplitude component of the seasonal sinusoid.  The seasonal sinusoid is 

not included in case 13  0A  , so the case 13 plots demonstrate performance results on 

stationary data similar to traditional SPC data.  Inspection of the resulting plots for cases 

1 and 7 show a general invariance to changes in the amplitude component.  Although 

there is a slight decrease in Percent Miss as the amplitude increases, we conclude that the 

adaptive regression technique is quite successful at accounting for the systematic, non-

stationary nature of syndromic surveillance data. 
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VI. DISCUSSION AND CONCLUSIONS 

A.  DISCUSSION 

After performing the comparative analysis, we determined that the ATFS statistic 

is not a useful measure in the context of syndromic surveillance.  We have shown that the 

MEWMA and the MCUSUM perform similarly under our controlled scenarios using the 

ATFS measure.  This result does not give an observer any information about the 

timeliness of detecting the outbreak.  Many of the run lengths collected for the ATFS 

statistic were longer than the outbreak period.  Even though the method does signal later 

in time, the signal is too late to be considered helpful to any efforts by a public health 

response team.  For longer run lengths, we also cannot tell if the alarm was caused by a 

delayed response to the outbreak itself, or if in fact, the alarm is a false signal caused by 

noise in the system. 

Instead, the other two measures, ATFS Given True Signal and Percent Miss, both 

provide constructive information to a medical response worker.  The ATFS Given True 

Signal demonstrates how fast a method signals, when it actually does catch the outbreak 

present.  The Percent Miss metric illustrates how good the method is able to detect 

outbreaks. These measures are applicable in a controlled setting where the analyst knows 

that there is an outbreak present.  In the real world, the presence of an outbreak is not 

known, at least not until after the outbreak has occurred, so these measures are not 

applicable in practice. 

Since there seems to be no performance advantage to using the MEWMA or the 

MCUSUM, this result leads us to prefer the MEWMA method for procedural reasons.  

Past literature has provided sufficient analysis and intuitive recommendation for the 

choice of the   parameter; however, choosing an appropriate k  is much more difficult to 

understand. Currently, there is no research to guide one on the trade-offs in various k  

values, thereby preventing well-steeped grounds for any choice in k .  While the methods 

perform with no statistical difference, we thus prefer the MEWMA over the MCUSUM 

simply for the procedural simplicity of the former.  



 32 

 

B.  FUTURE RESEARCH 

The work presented in this thesis conducts uses idealized, simulated data streams 

which do not account for holiday or day-of-the-week effects.  While such an inclusion 

would provide a more realistic data series, Dunfee and Hegler (2007) concluded that 

these effects were of minimal to no consequence.  However, future work might look to 

confirm this finding for multivariate methods applied to multivariate data.  In addition, 

the systematic effects in this work were characterized by a smooth sinusoidal function.  

Comparison of the methods’ performance when the systematic effects are more random 

and/or less smooth would be useful. 

The disease outbreak behavior modeled in this thesis assumes that disease 

outbreaks are temporary in nature.  Future research might consider the effects of long-

term outbreaks on performance.  The form of the outbreaks was a simple linear increase 

and linear decrease.  Future research should evaluate the performance of the methods for 

other forms of outbreaks.  In addition, this work incorporated an outbreak component 

uniformly across all dimensions of the data.  Further study may evaluate the sensitivity of 

these methods when an outbreak is only present in one or some dimensions.   

The work presented in this thesis analyzed only two specific multivariate 

detection methods.  Further exploration into other methods may identify even better 

techniques for the syndromic surveillance problem.   Fricker (2007) found the MCUSUM 

outperformed some other methods (such as Hotelling’s T
2
 and Healy’s MCUSUM), but 

additional comparisons between the methods listed herein against others are always 

warranted.  (For a description of other multivariate methods see Shmueli and Fienberg, 

2006.) 

Little work has been done to compare the performance of multivariate methods 

against multiple univariate techniques in the syndromic surveillance setting. While some 

introductory research has explored this topic (see, for example, Fricker 2007), further 

research is warranted.  
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The methods presented here were tested on simulated data that exhibit the major 

characteristics of syndromic surveillance data but do not completely mimic realistic data. 

The multivariate CUSUM and EWMA methods were applied to the same set of data in an 

attempt to rate the relative performance against each other in a more controlled fashion 

than could be achieved from analysis on real data. Future research in this topic may 

include assessing the procedures’ performance on actual data in order to confirm that 

these results do generalize to the real public health problem. 
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APPENDIX A. 

This appendix includes the main MATLAB code developed in this thesis. 

 

A. MEWMA (INITIAL) 

% The mewma function generates data based on the traditional SPC 
% assumptions and input parameters and runs the MEWMA method on these 
% data recording the length of each individual run (number of days     

% until the method signals).  This function is used in the initial     
% simulations. 
% Input - a structure containing input parameters including the        

%         elements: 
%          contLim    -- the control limit 
%          lambda     -- the constant lambda parameter 
%          oocMean    -- the magnitude of the out-of-control mean 
%          icMean     -- the value of the in-control mean 
%          icSigma    -- the in-control covariance matrix 
%          numStreams -- the number of data streams (dimensions) to 
%                        generate 
%          numLoops   -- the number of times to run the MCUSUM 
% Output - a structure containing the run lengths from the simulation 
%          runLengths -- the vector of generated run lengths 

  
function  [mewmaResults]= mewma(inputParameters) 

  
% Initialize the Parameter Values-------------------------------------- 
contLim = inputParameters.mewmaContLim; 
lambda =inputParameters.lambda; 
oocMean = inputParameters.oocMean; 
icMean = inputParameters.icMean; 
icSigma = inputParameters.icSigma; 
numStreams = inputParameters.numStreams; 
numLoops = inputParameters.numLoops; 

  
% Calculate the Covariance Matrix and its Inverse for 'z infinity' 
% for the MEWMA method 
sigmaZInfinity = (lambda / (2-lambda)) * icSigma; 
sigmaZInfinityInverse = inv(sigmaZInfinity); 

  
% Run the MEWMA method------------------------------------------------- 
indivRuns = zeros(numLoops,1); 
for j=1:numLoops 
    z = zeros(numStreams,1); 
    mew = 0.0; 
    runLength = 0;   
    while (mew <= contLim) 
        newObs = mvnrnd(oocMean,icSigma)'; 
        temp = (lambda * (newObs - icMean)) + ((1-lambda)*z); 
        for q=1:numStreams 
            if temp(q,1) < 0 
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                z(q,1) = 0; 
            else 
                z(q,1) = temp(q,1); 
            end 
        end 
        mew = sqrt(z'*sigmaZInfinityInverse*z); 
        runLength = runLength + 1; 
    end 
    indivRuns(j,1) = runLength; 
end 

  
% Save the vector of run lengths in the output structure--------------- 
mewmaResults.runLengths = indivRuns; 

 

B. MCUSUM (INITIAL) 

 

% The mcusum function generates data based on the traditional SPC 
% assumptions and input parameters and runs the MCUSUM method on these 
% data recording the length of each individual run (number of days     

% until the method signals).  This function is used in the initial     
% simulations. 
% Input - a structure containing input parameters including the        

%         elements: 
%          contLim    -- the control limit 
%          k          -- the constant k parameter 
%          oocMean    -- the magnitude of the out-of-control mean 
%          icMean     -- the value of the in-control mean 
%          numStreams -- the number of data streams (dimensions) to 
%                        generate 
%          numLoops   -- the number of times to run the MCUSUM 
% Output - a structure containing the run lengths from the simulation 
%          runLengths -- the vector of generated run lengths 

  
function [mcusumResults] = mcusum(inputParameters) 

  
% Initialize the Parameter Values-------------------------------------- 
contLim = inputParameters.mcusumContLim; 
k = inputParameters.k; 
oocMean = inputParameters.oocMean; 
icMean = inputParameters.icMean; 
icSigma = inputParameters.icSigma; 
numStreams = inputParameters.numStreams; 
numLoops = inputParameters.numLoops; 

  
% Define the in-control mean vector and covariance matrix-------------- 
icSigmaInv = inv(icSigma); 
kVector = ones(numStreams,1)*k; 
MCUSUMk = sqrt(kVector'*icSigmaInv*kVector); 

  
% Run the MCUSUM method------------------------------------------------ 
indivRuns = zeros(numLoops,1); 
for i=1:numLoops 



 37 

    s = zeros(numStreams,1); 
    y = 0.0; 
    runLength = 0; 
    while y < contLim 
        temp = s; 
        newObs = mvnrnd(oocMean,icSigma)'; 
        c = sqrt((temp+newObs-icMean)'*icSigmaInv*(temp+newObs-

icMean)); 
        if c > MCUSUMk 
            temp2 = (temp + newObs - icMean)*(1-(MCUSUMk/c)); 
        else 
            temp2 = zeros(numStreams,1); 
        end 
        for stream = 1:numStreams 
            if temp2(stream,1) < 0 
                s(stream,1) = 0; 
            else 
                s(stream,1) = temp2(stream,1); 
            end 
        end 
        y = sqrt(s'*icSigmaInv*s); 
        runLength = runLength + 1; 
    end 
    indivRuns(i,1) = runLength; 
end 

  

% Save the vector of run lengths in the output structure--------------- 
mcusumResults.runLengths = indivRuns; 

 

C. DATA GENERATION AND ADAPTIVE REGRESSION TOOL 

 

% The dataGeneratorRegress function is a tool that generates           

% multivariate syndromic surveillance data and runs the adaptive       
% regression technique on this data.  It displays the sample           
% correlation matrices of the generated data and the adaptive          
% regression residuals.  It also constructs a plot including the       
% generated data streams and the adaptive regression residuals. 
% Input -  numStreams  -- the number of streams/dimensions to model 
%          numDays     -- the number of days of data to simulate 
%          baseline    -- the baseline of the data, beta 
%          amplitude   -- the amplitude of the seasonal cycle, A 
%          sigma       -- the standard deviation of the generated noise 

%                         in the data 
%          lookBack    -- the sliding baseline used in the adaptive 
%                         regression technique 
% Output - dataCorr    -- the sample correlation matrix of the data 
%          residCorr   -- the sample correlation matrix of the         

%                         residuals 
%          dataAndResidualsPlot 
%                      -- a MATLAB figure containing plots of the      

%                         generated data streams and the residual      
%                         "streams" 

  
% INPUT PARAMETERS----------------------------------------------------- 
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% The input parameters shown here are only an example. 
numStreams = 4; 
numDays = 365; 

% basline is either 90 (normal noise) or 0 (lognormal noise) 
baseline = 90; 
amplitude = 20; 
sigma = 10; 
lookBack = 35; 
  

 
% INTIIALIZE ARRAYS---------------------------------------------------- 
dataStreams = zeros(numDays,numStreams); 
predictions = zeros(numDays-lookBack,numStreams); 
residuals = zeros(numDays-lookBack,numStreams); 
means = zeros(numDays,numStreams); 
noise = zeros(numDays,numStreams); 

 
% designMatrix is used in the regressions 
designMatrix = ones(lookBack,2); 
designMatrix(:,2) = (1:lookBack)'; 

  
% DATA GENERATION------------------------------------------------------ 
% Generate the underlying sinusoid 
for day = 1:numDays 
    means(day,:)... 
        = ones(1,numStreams)*(amplitude*(sin(2*pi*day/365))+ baseline); 
end 

  
% Generate the noise for all streams and all days 
if(baseline == 90) 
    noise = random('norm',0.0,sigma,numDays,numStreams); 
elseif(baseline == 0) 
    noise = random('logn',1.0,sigma,numDays,numStreams); 
end 

  
% Store the day's observations, force minimum count to zero 
dataStreams = max(dataStreams,ceil(means+noise)); 

  
% Report the correlation structure of the generated data 
dataCorr = corr(dataStreams); 
disp('The sample correlation matrix is:'); 
disp(dataCorr); 

  
% REGRESSION SECTION--------------------------------------------------- 
for stream = 1:numStreams 
    for day = (lookBack+1):numDays 

         

        % Grab the counts from the previous "lookBack" # of days 
        regressData = dataStreams((day-lookBack):(day-1),stream); 

  
        % Daily regression calculation, b holds the model coefficients 
        b = regress(regressData, designMatrix); 
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        % Predict tomorrow's count 
        tomorrowData = [1 lookBack+1]; 
        predictions = tomorrowData*b; 

  
        % Calculate residual values 
        residuals(day-lookBack,stream)... 
            = dataStreams(day,stream) - predictions; 
    end 
end 

  
residCorr = corr(residuals); 
disp('The correlation matrix of the residuals is:'); 
disp(residCorr); 

  
% GENERATE PLOTS------------------------------------------------------- 
% The remaining code plots the generated data streams and the residual 
% "streams" from the regression in a single figure 
dataRegress = figure('Name','Data and Residuals','NumberTitle','Off'); 
for index = 1:numStreams 
    subplot(numStreams,1,index); 
    plot(1:numDays,dataStreams(:,index)); 
    xlabel('Day Number'); 
    ylabel('Count'); 
    subplot(numStreams,2,2*index-1); 
    plot(1:numDays,dataStreams(:,index)); 
    xlabel('Day number'); 
    ylabel('Count'); 
    subplot(numStreams,2,2*index); 
    plot((lookBack+1:numDays),residuals(:,index)); 
    xlabel('Day number'); 
    ylabel('Residuals'); 
end 
saveas(dataRegress,'dataAndResidualsPlot.fig'); 

 

D.  MODIFIED MEWMA FOR SYNDROMIC SURVEILLANCE DATA 

 

% The mewmaData function generates syndromic surveillance data based on 
% the input parameters and runs the modified MEWMA method on 
% these data (using adaptive regression) recording multiple useful 
% statistics.  This function is used in the main simulation analysis. 
% Input - a structure containing input parameters including the          

%         elements: 
%          contLim    -- the control limit 
%          lambda     -- the constant lambda parameter 
%          icMean     -- the value of the in-control mean 
%          icSigma    -- the in-control covariance matrix 
%          numStreams -- the number of data streams (dimensions) to 
%                        generate 
%          numStreams -- the number of streams/dimensions to model 
%          numLoops   -- the number of times to run the MCUSUM 
%          baseline   -- the baseline of the data, beta 
%          amplitude  -- the amplitude of the seasonal cycle, A 
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%          dataSigma  -- the standard deviation of the noise in the       

%                        data 
%          lookBack   -- the "optimal" sliding baseline, n 
%          outbreak   -- boolean, true if an outbreak is modeled 
%          outbreakLength -- the duration of the outbreak in days 
%          outbreakMax    -- the peak magnitude of the outbreak        

%                            component 
% Output - a structure containing the run lengths from the simulation 
%          runLengths -- the vector of generated run lengths 
%          ATFS       -- estimate of the ATFS 
%          ATFSse     -- standard error of the ATFS estimate 
%          detections -- logical vector, 1 if detected during the      

%                        outbreak, 0 otherwise 
%          percentDetections -- percentage of runs detected during the 
%                               outbreak 
%          percentMiss       -- percentage of runs not detected during 

%                               the outbreak 
%          percentMissSE     -- standard error of percentMiss estimate 
%          ATFSGivenDetect   -- ATFS given that the signal was detected 
%                               during the outbreak 
%          ATFSseGivenDetect -- standard error of the ATFSGivenDetect 
%                               estimate 

 
function  [mewmaResults]= mewmaData(inputParameters) 

  
% INITIALIZE INPUT PARAMETERS------------------------------------------ 
contLim = inputParameters.mewmaContLim; 
lambda =inputParameters.lambda; 
icMean = inputParameters.icMean; 
icSigma = inputParameters.icSigma; 
numStreams = inputParameters.numStreams; 
numLoops = inputParameters.numLoops; 
baseline = inputParameters.baseline; 
amplitude = inputParameters.amplitude; 
dataSigma = inputParameters.dataSigma; 
lookBack = inputParameters.lookBack; 
outbreak = inputParameters.outbreak; 
if(outbreak) 
    outbreakLength = inputParameters.outbreakLength; 
    outbreakMax = inputParameters.outbreakMax; 
    outbreakPeakDay = (outbreakLength + 1) / 2; 
    outbreakSlope = outbreakMax/outbreakPeakDay; 
end 

  
% Define the designMatrix used in the regressions 
designMatrix = ones(lookBack,2); 
designMatrix(:,2) = (1:lookBack)'; 
residual = zeros(numStreams,1); 

  
% Calculate the Covariance Matrix and its Inverse for 'z infinity' 
% for the MEWMA method 
sigmaZInfinity = (lambda / (2-lambda)) * icSigma; 
sigmaZInfinityInverse = inv(sigmaZInfinity); 
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% GENERATE DATA AND RUN THE MODIFIED MEWMA----------------------------- 
runLengths = zeros(numLoops,1); 
detections = zeros(numLoops,1); 
for j=1:numLoops 
    z = zeros(numStreams,1); 
    mew = 0.0; 
    runLength = 0; 
    randomStartDay = ceil(365*rand); 
    currentDay = randomStartDay; 
    outbreakStartDay = randomStartDay + 100 + lookBack; 
    dataStreams = zeros(500,numStreams); 
    % Generate Startup Data 
    for i=1:lookBack 

dataMean = ones(1,numStreams)*(amplitude* ... 

(sin(2*pi*currentDay/365))+ baseline); 
        if(baseline == 90) 
            dataNoise = random('norm',0.0,dataSigma,1,numStreams); 
        elseif(baseline == 0) 
            dataNoise = random('logn',1.0,dataSigma,1,numStreams); 
        end 
        dataStreams(currentDay,:) = ...     

max(zeros(1,numStreams),ceil(dataMean + dataNoise)); 
        currentDay = currentDay + 1; 
    end 
    % Run the method 
    while (mew <= contLim) 
        % Calculate the level of the outbreak for the current day 
        if(outbreak) 
            if(currentDay < outbreakStartDay || currentDay >= ... 

outbreakStartDay + outbreakLength) 
                outbreakLevel = 0.0; 
            elseif(currentDay < outbreakStartDay + outbreakPeakDay) 
                outbreakLevel = outbreakSlope*(currentDay + 1 - ... 

outbreakStartDay); 
            else 
                outbreakLevel = outbreakMax - outbreakSlope* ... 

(currentDay - (outbreakPeakDay+outbreakStartDay - 1)); 
            end 
        end 
        % Generate new data point 
        if(outbreak) 
            dataMean = ones(1,numStreams)* ... 

(amplitude*(sin(2*pi*currentDay/365)) ...       

+ baseline + outbreakLevel); 

        else 
            dataMean = ones(1,numStreams)* ... 

(amplitude*(sin(2*pi*currentDay/365))+ baseline); 
        end 
        if(baseline == 90) 
            dataNoise = random('norm',0.0,dataSigma,1,numStreams); 
        elseif(baseline == 0) 
            dataNoise = random('logn',1.0,dataSigma,1,numStreams); 
        end 
        dataStreams(currentDay,:) = 

max(zeros(1,numStreams),ceil(dataMean + dataNoise)); 
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        % Regress on the data to get residual 
        for stream = 1:numStreams 

         
            % Grab the counts from the previous "lookBack" # of days 
            regressData = ...                    

dataStreams((currentDay-lookBack):(currentDay-1),stream); 

  
            % Daily regression calculation, b holds the model          

% coefficients 
            b = regress(regressData, designMatrix); 

  

            % Predict tomorrow's count 
            tomorrowData = [1 lookBack+1]; 
            predictions = tomorrowData*b; 

  
            % Calculate residual values 
            residual(stream,1) = ...                         

dataStreams(currentDay,stream) - predictions; 
        end 
        % Run the MEWMA method on the residual 
        newObs = residual; 
        temp = (lambda * (newObs - icMean)) + ((1-lambda)*z); 
        for q=1:numStreams 
            if temp(q,1) < 0 
                z(q,1) = 0; 
            else 
                z(q,1) = temp(q,1); 
            end 
        end 
        mew = sqrt(z'*sigmaZInfinityInverse*z); 
        % If the method signals in the init period (first 100 days of 
        % running) the MEW statistic resets. 
        if((currentDay < randomStartDay + 100 + lookBack) && ...      

mew > contLim) 
            mew = 0.0; 
        end 
        % Start the runLength counter after the init period 
        if(currentDay >= randomStartDay + 100 + lookBack) 
            runLength = runLength + 1; 
        end 
        currentDay = currentDay + 1; 
    end 
    runLengths(j,1) = runLength; 
    if(outbreak && runLengths(j,1) <= outbreakLength) 
        detections(j,1) = 1; 
    end 
end 

  

% SAVE THE RESULTS----------------------------------------------------- 
mewmaResults.runLengths = runLengths; 
mewmaResults.ATFS = mean(runLengths); 
mewmaResults.ATFSse = std(runLengths)/sqrt(numLoops); 
if(outbreak) 
    percentDetections = mean(detections); 
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    percentMiss = 1 - percentDetections; 
    percentMissSE = sqrt(percentDetections*percentMiss/numLoops); 
    if(detections == 0) 
        ATFSGivenDetect = 0; 
        ATFSseGivenDetect = 0; 
    else 
        detectionsLogical = logical(detections); 
        runLengthsGivenDetect = runLengths(detectionsLogical); 
        ATFSGivenDetect  = mean(runLengthsGivenDetect); 
        ATFSseGivenDetect = ... 

std(runLengthsGivenDetect)/sqrt(length(runLengthsGivenDetect)); 
    end 
    mewmaResults.detections = detections; 
    mewmaResults.percentDetections = percentDetections; 
    mewmaResults.percentMiss = percentMiss; 
    mewmaResults.percentMissSE = percentMissSE; 
    mewmaResults.ATFSGivenDetect = ATFSGivenDetect; 
    mewmaResults.ATFSseGivenDetect = ATFSseGivenDetect; 
end 

 

E. MODIFIED MCUSUM FOR SYNDROMIC SURVEILLANCE DATA 

 

% The mcusumData function generates syndromic surveillance data based  

% on the input parameters and runs the modified MCUSUM method on 
% these data (using adaptive regression) recording multiple useful 
% statistics.  This function is used in the main simulation analysis. 
% Input - a structure containing input parameters including the        

%         elements: 
%          contLim    -- the control limit 
%          k          -- the constant k parameter 
%          icSigma    -- the in-control covariance matrix 
%          numStreams -- the number of data streams (dimensions) to 
%                        generate 
%          numLoops   -- the number of times to run the MCUSUM 
%          baseline   -- the baseline of the data, beta 
%          amplitude  -- the amplitude of the seasonal cycle, A 
%          dataSigma  -- the standard deviation of the noise in the    

%                        data 
%          lookBack   -- the "optimal" sliding baseline, n 
%          outbreak   -- boolean, true if an outbreak is modeled 
%          outbreakLength -- the duration of the outbreak in days 
%          outbreakMax    -- the peak magnitude of the outbreak        

%                            component 
% Output - a structure containing the run lengths from the simulation 
%          runLengths -- the vector of generated run lengths 
%          ATFS       -- estimate of the ATFS 
%          ATFSse     -- standard error of the ATFS estimate 
%          detections -- logical vector, 1 if detected during the      

%                        outbreak, 0 otherwise 
%          percentDetections -- percentage of runs detected during the 
%                               outbreak 
%          percentMiss       -- percentage of runs not detected during 

%                               the outbreak 
%          percentMissSE     -- standard error of percentMiss estimate 
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%          ATFSGivenDetect   -- ATFS given that the signal was detected 
%                               during the outbreak 
%          ATFSseGivenDetect -- standard error of the ATFSGivenDetect 
%                               estimate 

 
function [mcusumResults] = mcusumData(inputParameters) 

  
% INITIALIZE INPUT PARAMETERS------------------------------------------ 
contLim = inputParameters.mcusumContLim; 
k = inputParameters.k; 
icSigma = inputParameters.icSigma; 
numStreams = inputParameters.numStreams; 
numLoops = inputParameters.numLoops; 
baseline = inputParameters.baseline; 
amplitude = inputParameters.amplitude; 
dataSigma = inputParameters.dataSigma; 
lookBack = inputParameters.lookBack; 
outbreak = inputParameters.outbreak; 

  

if(outbreak) 
    outbreakLength = inputParameters.outbreakLength; 
    outbreakMax = inputParameters.outbreakMax; 
    outbreakPeakDay = (outbreakLength + 1) / 2; 
    outbreakSlope = outbreakMax/outbreakPeakDay; 
end 

  

% designMatrix is used in the regressions 
designMatrix = ones(lookBack,2); 
designMatrix(:,2) = (1:lookBack)'; 
residual = zeros(numStreams,1); 

  
% Define the in control mean vector and covariance matrix 
icSigmaInv = inv(icSigma); 
kVector = ones(numStreams,1)*k; 
MCUSUMk = sqrt(kVector'*icSigmaInv*kVector); 

  
% GENERATE DATA AND RUN MODIFIED MCUSUM-------------------------------- 
runLengths = zeros(numLoops,1); 
detections = zeros(numLoops,1); 
for j=1:numLoops 
    s = zeros(numStreams,1); 
    y = 0.0; 
    runLength = 0; 
    randomStartDay = ceil(365*rand); 
    currentDay = randomStartDay; 
    outbreakStartDay = randomStartDay + 100 + lookBack; 
    dataStreams = zeros(500,numStreams); 
    % Generate Startup Data 
    for i=1:lookBack 
        dataMean = ones(1,numStreams)* ... 

(amplitude*(sin(2*pi*currentDay/365))+ baseline); 
        if(baseline == 90) 
            dataNoise = random('norm',0.0,dataSigma,1,numStreams); 
        elseif(baseline == 0) 
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            dataNoise = random('logn',1.0,dataSigma,1,numStreams); 
        end 
        dataStreams(currentDay,:) = max(zeros(1,numStreams), ... 

ceil(dataMean + dataNoise)); 
        currentDay = currentDay + 1; 
    end 
    % Run the method 
    while y < contLim 
        % Calculate the level of the outbreak for the current day 
        if(outbreak) 
            if(currentDay < outbreakStartDay || currentDay >= ... 

outbreakStartDay + outbreakLength) 
                outbreakLevel = 0.0; 
            elseif(currentDay < outbreakStartDay + outbreakPeakDay) 
                outbreakLevel = outbreakSlope* ...              

(currentDay + 1 - outbreakStartDay); 
            else 
                outbreakLevel = outbreakMax - outbreakSlope* ... 

(currentDay - (outbreakPeakDay+outbreakStartDay - 1)); 
            end 
        end 
        % Generate new data point 
        if(outbreak) 
            dataMean = ones(1,numStreams)* ... 

(amplitude*(sin(2*pi*currentDay/365))+ ...         

baseline + outbreakLevel); 
        else 
            dataMean = ones(1,numStreams)* ... 

(amplitude*(sin(2*pi*currentDay/365))+ baseline); 
        end 
        if(baseline == 90) 
            dataNoise = random('norm',0.0,dataSigma,1,numStreams); 
        elseif(baseline == 0) 
            dataNoise = random('logn',1.0,dataSigma,1,numStreams); 
        end 
        dataStreams(currentDay,:) = ... 

max(zeros(1,numStreams),ceil(dataMean + dataNoise)); 
        % Regress on the data to get residual 
        for stream = 1:numStreams 

         
            % Grab the counts from the previous "lookBack" # of days 
            regressData = ... 

dataStreams((currentDay-lookBack):(currentDay-1),stream); 

  
            % Daily regression calculation, b holds the model          

% coefficients 
            b = regress(regressData, designMatrix); 

  

            % Predict tomorrow's count 
            tomorrowData = [1 lookBack+1]; 
            predictions = tomorrowData*b; 

  
            % Calculate residual values 
            residual(stream,1) = ...        

dataStreams(currentDay,stream) - predictions; 
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        end 
        % Run the MCUSUM method on the residual 
        temp = s; 
        newObs = residual; 
        c = sqrt((temp+newObs)'*icSigmaInv*(temp+newObs)); 
        if c > MCUSUMk 
            temp2 = (temp + newObs)*(1-(MCUSUMk/c)); 
        else 
            temp2 = zeros(numStreams,1); 
        end 
        for stream = 1:numStreams 
            if temp2(stream,1) < 0 
                s(stream,1) = 0; 
            else 
                s(stream,1) = temp2(stream,1); 
            end 
        end 
        y = sqrt(s'*icSigmaInv*s); 
        % If the method signals in the init period (first 100 days of 
        % running) the MCUSUM statistic resets. 
        if((currentDay < randomStartDay + 100 + lookBack) && y > 

contLim) 
            s = zeros(numStreams,1); 
            y = 0.0; 
        end 
        % Start the runLength counter after the init period 
        if(currentDay >= randomStartDay + 100 + lookBack) 
            runLength = runLength + 1; 
        end 
        currentDay = currentDay + 1; 
    end 
    runLengths(j,1) = runLength; 
    if(outbreak && runLengths(j,1) <= outbreakLength) 
        detections(j,1) = 1; 
    end 
end 

  
% SAVE THE RESULTS----------------------------------------------------- 
mcusumResults.runLengths = runLengths; 
mcusumResults.ATFS = mean(runLengths); 
mcusumResults.ATFSse = std(runLengths)/sqrt(numLoops); 
if(outbreak) 
    percentDetections = mean(detections); 
    percentMiss = 1 - percentDetections; 
    percentMissSE = sqrt(percentDetections*percentMiss/numLoops); 
    if(detections == 0) 
        ATFSGivenDetect = 0; 
        ATFSseGivenDetect = 0; 
    else 
        detectionsLogical = logical(detections); 
        runLengthsGivenDetect = runLengths(detectionsLogical); 
        ATFSGivenDetect = mean(runLengthsGivenDetect); 
        ATFSseGivenDetect = std(runLengthsGivenDetect) ... 

/sqrt(length(runLengthsGivenDetect)); 
    end 
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    mcusumResults.detections = detections; 
    mcusumResults.percentDetections = percentDetections; 
    mcusumResults.percentMiss = percentMiss; 
    mcusumResults.percentMissSE = percentMissSE; 
    mcusumResults.ATFSGivenDetect = ATFSGivenDetect; 
    mcusumResults.ATFSseGivenDetect = ATFSseGivenDetect; 
end 

 

F. MAIN SIMULATION ENGINE 

 

% The mainSimulation file is the main engine used to run the           

% simulations in this comparative study.  It needs access to mewmData.m 
% and mcusumData.m in order to perform the adaptive regression         
% technique and modified MEWMA/MCUSUM methods.  Given a specific       
% background disease incidence scenario and maximum outbreak magnitude, 
% mainSimulation runs both methods for a given number of times over a  
% varying outbreak duration (3-15 days) and records the ATFS, ATFS     
% Given True Signal, and PercentMiss statistics along with the         
% respective plots. 
% Input - The inputs are not read into the program from another file.   

%         They are entered in the appropriate sections below.  The     
%         input variables are: 
%              caseNumber      -- the ID number of the simulated case 
%              mewmaContLim    -- the MEWMA control limit 
%              mcusumContLim   -- the MCUSUM control limit 
%              baseline        -- the baseline for the data, beta 
%              amplitude       -- the amplitude of the seasonal cycle, 

%                                 A 
%              dataSigma       -- the standard deviation of the noise  

%                                 in the data 
%              outbreakPercent -- the max magnitude of the outbreak as 

%                                 a percentage of the baseline 
%              numLoops        -- the number of times to run the       

%                                 methods 
%         The rest of the input parameters are STATIC throughout all 
%         simulations and do not need to be changed. 
% Output - This simulation saves records all ATFS, ATFS Given True     

%          Signal, and Percent Miss estimates (with standard errors),  
%          and it also generates plots of these three measures. 

  
% INPUT THE CASE PARAMETERS-------------------------------------------- 
caseNumber = 1; 
input.mewmaContLim = 3.3; 
input.mcusumContLim = 4.76; 
input.baseline = 90; 
input.amplitude = 80; 
input.dataSigma = 30; 
input.lookBack = 30; 
residSigma = 30.11; 
outbreakPercent = 50; 
input.outbreakMax = outbreakPercent*90/100; 
caseParameters = ['Baseline = ' num2str(input.baseline) ... 
                  '  Amplitude = ' num2str(input.amplitude) ... 
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                  '  Sigma = ' num2str(input.dataSigma) ... 
                  '  Outbreak Peak = ' num2str(input.outbreakMax)]; 

  
% INPUT THE SIMULATION PARAMETERS-------------------------------------- 
input.numLoops = 2500; 

  
% DEFINE THE STATIC METHOD PARAMETERS---------------------------------- 
input.lambda = 0.2; 
input.unscaledK = 0.37; 
input.numStreams = 4; 

  

% DEFINE THE STATIC OUTBREAK PARAMTERS--------------------------------- 
input.outbreak = true; 
outbreakLengthMin = 3; 
outbreakLengthMax = 15; 
outbreakLengthStep = 2; 
outbreakLengthArray = outbreakLengthMin : outbreakLengthStep : 

outbreakLengthMax; 

  

% ASSIGN IN-CONTROL CONDITIONS----------------------------------------- 
% Assume the in-control mean is all zeros. 
% The in-control sigma matrix depends on the case. 
input.k = residSigma*input.unscaledK; 
input.icMean = zeros(input.numStreams,1); 
input.icSigma = residSigma^2*eye(input.numStreams); 

  
% DECLARE STATISTIC HOLDING ARRAYS------------------------------------- 
% (The first column is MEWMA.  The second column is MCUSUM) 
ATFSGivenTrueSignalArray = zeros(7,2); 
ATFSseGivenTrueSignalArray = zeros(7,2); 
percentMissArray = zeros(7,2); 
percentMissSEArray = zeros(7,2); 
ATFSArray = zeros(7,2); 
ATFSseArray = zeros(7,2); 
arrayIndex = 1; 

  
% MAIN SIMULATION EXECUTION LOOP--------------------------------------- 
for index = outbreakLengthMin : outbreakLengthStep : outbreakLengthMax 
    input.outbreakLength = index; 
    mewmaResults = mewmaData(input); 
    mcusumResults = mcusumData(input); 
    ATFSGivenTrueSignalArray(arrayIndex,1) = ... 

mewmaResults.ATFSGivenDetect; 
    ATFSseGivenTrueSignalArray(arrayIndex,1) = ... 

mewmaResults.ATFSseGivenDetect; 
    percentMissArray(arrayIndex,1) = mewmaResults.percentMiss; 
    percentMissSEArray(arrayIndex,1) = mewmaResults.percentMissSE; 
    ATFSArray(arrayIndex,1) = mewmaResults.ATFS; 
    ATFSseArray(arrayIndex,1) = mewmaResults.ATFSse; 
    ATFSGivenTrueSignalArray(arrayIndex,2) = ... 

mcusumResults.ATFSGivenDetect; 
    ATFSseGivenTrueSignalArray(arrayIndex,2) = ... 

mcusumResults.ATFSseGivenDetect; 
    percentMissArray(arrayIndex,2) = mcusumResults.percentMiss; 
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    percentMissSEArray(arrayIndex,2) = mcusumResults.percentMissSE; 
    ATFSArray(arrayIndex,2) = mcusumResults.ATFS; 
    ATFSseArray(arrayIndex,2) = mcusumResults.ATFSse; 
    arrayIndex = arrayIndex + 1; 
end 
save(['case' num2str(caseNumber) 'Stats'],'caseParameters',... 
    'ATFSGivenTrueSignalArray','ATFSseGivenTrueSignalArray',... 
    'percentMissArray','percentMissSEArray',... 
    'ATFSArray','ATFSseArray'); 

  
% CONSTRUCT PLOTS FOR THE 3 MOES--------------------------------------- 

% ATFS GIVEN TRUE SIGNAL PLOT 

ATFSGivenTruePlot = figure('Name','ATFS Given True Signal Plot', ... 

'NumberTitle','off','Color','w'); 

set(0,'DefaultAxesColorOrder',[0 0 0], ... 

'DefaultAxesLineStyleOrder','-|--'); 

plot(outbreakLengthArray,ATFSGivenTrueSignalArray,'LineWidth',2); 

set(gca,'XTick',outbreakLengthMin : outbreakLengthStep : ... 

outbreakLengthMax); 

axis([3, 15, 0, 15]); 

xlabel('Duration of outbreak in days','FontSize',14); 

ylabel('ATFS Given a True Signal','FontSize',14); 

saveas(ATFSGivenTruePlot,['case' num2str(caseNumber) ... 

'ATFSGivenTrueSignalPlot.fig']); 

print('-tiff','-deps',['case' num2str(caseNumber) ... 

'ATFSGivenTrueSignalPic.eps']); 

 

% PERCENT MISS PLOT 

percentMissPlot = figure('Name','Percent Miss Plot', ... 

'NumberTitle','off','Color','w'); 

set(0,'DefaultAxesColorOrder',[0 0 0], ... 

'DefaultAxesLineStyleOrder','-|--'); 

plot(outbreakLengthArray,percentMissArray,'LineWidth',2); 

set(gca,'XTick',outbreakLengthMin : outbreakLengthStep : 

outbreakLengthMax); 

axis([3, 15, 0, 1]); 

xlabel('Duration of outbreak in days','FontSize',14); 

ylabel('Percent Miss','FontSize',14); 

saveas(percentMissPlot,['case' num2str(caseNumber) ... 

'percentMissPlot.fig']); 

print('-tiff','-deps',['case' num2str(caseNumber) ... 

'percentMissPic.eps']); 

 

% ATFS PLOT 

ATFSPlot = figure('Name','ATFS Plot','NumberTitle','off','Color','w'); 

set(0,'DefaultAxesColorOrder',[0 0 0], ... 

'DefaultAxesLineStyleOrder','-|--'); 

plot(outbreakLengthArray,ATFSArray,'LineWidth',2); 

set(gca,'XTick',outbreakLengthMin : outbreakLengthStep : ... 

outbreakLengthMax); 

axis('tight'); 

xlabel('Duration of outbreak in days','FontSize',14); 

ylabel('ATFS','FontSize',14); 

saveas(ATFSPlot,['case' num2str(caseNumber) 'ATFS.fig']); 

print('-tiff','-deps',['case' num2str(caseNumber) 'ATFSPic.eps']); 
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APPENDIX B. 

This appendix includes the results plots from all 18 simulation cases. In order of 

presentation, the plots show (1) ATFS, (2) ATFS given a signal during the outbreak, and 

(3) Percent Miss over varying outbreak durations. Note that the solid lines represent the 

modified MEWMA and the dashed lines represent the modified MCUSUM. 

 

 
Baseline Amplitude Data Sigma 

Outbreak 

Peak 

Sliding 

Baseline 

Estimate of 

Residual SD 

MEWMA 

ContLim 

MCUSUM 

ContLim 

Case   A    p  n  ˆ
R  MEWMAh  MCUSUMh  

1 90 80 30 45 30 30.11 3.28 4.64 

2 90 80 30 22.5 30 30.11 3.28 4.64 

3 90 80 30 9 30 30.11 3.28 4.64 

4 90 80 10 45 30 10.62 3.31 4.78 

5 90 80 10 22.5 30 10.62 3.31 4.78 

6 90 80 10 9 30 10.62 3.31 4.78 

7 90 20 30 45 40 31.46 3.26 4.6 

8 90 20 30 22.5 40 31.46 3.26 4.6 

9 90 20 30 9 40 31.46 3.26 4.6 

10 90 20 10 45 35 10.59 3.26 4.6 

11 90 20 10 22.5 35 10.59 3.26 4.6 

12 90 20 10 9 35 10.59 3.26 4.6 

13 90 0 30 45 45 31.29 3.27 4.62 

14 90 0 30 22.5 45 31.29 3.27 4.62 

15 90 0 30 9 45 31.29 3.27 4.62 

16 90 0 10 45 35 10.58 3.25 4.57 

17 90 0 10 22.5 35 10.58 3.25 4.57 

18 90 0 10 9 35 10.58 3.25 4.57 
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Case 1 Case 2 
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Case 3 Case 4 
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Case 5 Case 6 
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Case 7 Case 8 
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Case 9 Case 10 
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Case 11 Case 12 
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Case 13 Case 14 
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Case 15 Case 16 
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Case 17 Case 18 
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APPENDIX C. 

This appendix includes the Microsoft Excel spreadsheet we used to assess 

whether the methods’ performance was statistically significantly different in terms of 

Average Time to First Signal (ATFS), ATFS Given True Signal, and Percent Miss.  The 

“widths” are computed by taking the sum of the standard errors of the two methods and 

multiplying by 2.  Comparing the differences between the MEWMA and MCUSUM 

methods with the “widths” of the standard errors of the methods, the gray highlighted cell 

entries denote a “width” that is smaller than the difference of the given performance 

metric.  This is an approximate two-sample hypothesis test with a 5 percent significance 

level. 
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A.  AVERAGE TIME TO FIRST SIGNAL 

 ATFS   se  

Case MEWMA MCUSUM Difference MEWMA MCUSUM widths 

1 35.996 43.1048 7.1088 1.5204 1.6494 6.3396 

 19.3484 22.888 3.5396 1.0609 1.1569 4.4356 

 13.0332 13.2184 0.1852 0.789 0.7574 3.0928 

 10.4888 11.9264 1.4376 0.6474 0.6913 2.6774 

 9.1864 10.1744 0.988 0.5598 0.5843 2.2882 

 9.3476 9.0936 0.254 0.5069 0.4882 1.9902 

 9.8628 9.2204 0.6424 0.5587 0.4494 2.0162 

2 82.2448 82.1708 0.074 1.8829 1.9152 7.5962 

 74.2488 77.0992 2.8504 1.89 1.9123 7.6046 

 68.1792 68.0976 0.0816 1.8275 1.86 7.375 

 63.1012 63.1204 0.0192 1.7644 1.8261 7.181 

 58.7412 58.9208 0.1796 1.706 1.7287 6.8694 

 54.1096 54.6408 0.5312 1.6532 1.6273 6.561 

 53.9268 54.8968 0.97 1.5347 1.6419 6.3532 

3 96.0572 97.3696 1.3124 1.9743 1.9713 7.8912 

 93.7144 95.7844 2.07 1.9397 1.9243 7.728 

 97.9308 92.7952 5.1356 1.9983 1.9134 7.8234 

 91.7412 92.1948 0.4536 1.9892 1.8836 7.7456 

 91.2048 88.8364 2.3684 1.9329 1.8465 7.5588 

 90.9804 91.7796 0.7992 1.8919 1.9157 7.6152 

 92.556 90.832 1.724 1.9561 1.8925 7.6972 

4 1.3208 1.4552 0.1344 0.0093 0.01 0.0386 

 1.6812 1.8076 0.1264 0.0098 0.0089 0.0374 

 1.9208 2.0544 0.1336 0.0112 0.0108 0.044 

 2.1808 2.356 0.1752 0.0133 0.0128 0.0522 

 2.4008 2.6268 0.226 0.0149 0.0143 0.0584 

 2.6804 2.822 0.1416 0.0167 0.0157 0.0648 

 2.8436 3.0804 0.2368 0.0187 0.0178 0.073 

5 9.5108 14.2784 4.7676 0.7232 0.8797 3.2058 

 4.1692 6.0712 1.902 0.3126 0.4615 1.5482 

 3.6516 3.9224 0.2708 0.2102 0.2128 0.846 

 3.9032 3.994 0.0908 0.1893 0.1652 0.709 

 4.1868 4.2608 0.074 0.1856 0.1274 0.626 

 4.534 4.7148 0.1808 0.1715 0.1368 0.6166 

 4.8384 5.0396 0.2012 0.1686 0.1361 0.6094 

6 77.0572 84.5268 7.4696 1.7675 1.8489 7.2328 

 72.258 75.862 3.604 1.7241 1.7177 6.8836 

 60.2312 66.3656 6.1344 1.6191 1.6577 6.5536 

 61.0808 58.806 2.2748 1.6679 1.5615 6.4588 

 55.8964 57.5468 1.6504 1.5517 1.568 6.2394 

 54.3048 55.8352 1.5304 1.5282 1.5403 6.137 

 54.43 54.3408 0.0892 1.5688 1.5134 6.1644 
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7 31.908 37.2636 5.3556 1.4164 1.4426 5.718 

 14.9604 19.7476 4.7872 0.9157 1.0466 3.9246 

 10.0004 10.8008 0.8004 0.6803 0.6655 2.6916 

 7.8792 8.5736 0.6944 0.48 0.5735 2.107 

 7.1432 7.1984 0.0552 0.4126 0.4448 1.7148 

 7.574 7.0892 0.4848 0.43 0.3393 1.5386 

 7.5196 7.2612 0.2584 0.4013 0.3727 1.548 

8 81.5456 84.688 3.1424 1.9988 1.952 7.9016 

 74.5012 74.5252 0.024 1.987 1.9175 7.809 

 63.8872 62.8192 1.068 1.7861 1.7143 7.0008 

 58.3876 56.6692 1.7184 1.7051 1.6056 6.6214 

 54.8284 54.2676 0.5608 1.7245 1.6507 6.7504 

 51.5272 49.658 1.8692 1.6201 1.5526 6.3454 

 50.7256 45.5596 5.166 1.6303 1.493 6.2466 

9 98.0696 98.4796 0.41 2.0141 1.956 7.9402 

 95.5452 95.8252 0.28 2.0455 2.0027 8.0964 

 92.8092 93.3532 0.544 1.9396 1.8941 7.6674 

 92.104 91.9516 0.1524 1.9258 1.8703 7.5922 

 93.5464 93.5296 0.0168 1.9773 1.9951 7.9448 

 89.4308 93.6644 4.2336 1.9529 2.0181 7.942 

 90.8908 88.594 2.2968 1.899 1.8456 7.4892 

10 1.2712 1.3896 0.1184 0.0089 0.0098 0.0374 

 1.6632 1.7728 0.1096 0.0097 0.0088 0.037 

 1.8676 1.9936 0.126 0.0103 0.0099 0.0404 

 2.1184 2.268 0.1496 0.0125 0.0122 0.0494 

 2.3628 2.5192 0.1564 0.0137 0.0131 0.0536 

 2.5608 2.758 0.1972 0.0149 0.015 0.0598 

 2.8248 2.9648 0.14 0.0164 0.0165 0.0658 

11 5.5968 8.8368 3.24 0.5068 0.7597 2.533 

 3.0024 3.258 0.2556 0.2137 0.2279 0.8832 

 3.0056 3.2992 0.2936 0.1161 0.1571 0.5464 

 3.1884 3.4128 0.2244 0.0193 0.0276 0.0938 

 3.5656 3.7568 0.1912 0.0266 0.0267 0.1066 

 3.9404 4.1216 0.1812 0.0289 0.0249 0.1076 

 4.2796 4.4968 0.2172 0.0281 0.0287 0.1136 

12 75.118 79.26 4.142 1.8068 1.8652 7.344 

 63.2436 64.83 1.5864 1.7956 1.7606 7.1124 

 53.1076 55.4744 2.3668 1.6316 1.7198 6.7028 

 45.9408 47.0348 1.094 1.5957 1.5546 6.3006 

 42.624 41.9264 0.6976 1.5203 1.3922 5.825 

 40.86 40.5076 0.3524 1.3831 1.4269 5.62 

 39.392 40.1988 0.8068 1.4138 1.4708 5.7692 

13 30.0236 34.946 4.9224 1.3689 1.3975 5.5328 

 14.9448 17.1596 2.2148 0.8758 0.9325 3.6166 

 8.7704 10.8004 2.03 0.5607 0.7825 2.6864 

 7.474 7.4664 0.0076 0.4383 0.4671 1.8108 

 6.556 6.4892 0.0668 0.355 0.443 1.596 

 6.7608 6.2232 0.5376 0.4721 0.2289 1.402 

 6.44 6.456 0.016 0.242 0.2334 0.9508 
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14 83.0212 82.9684 0.0528 1.9529 1.8772 7.6602 

 69.8128 71.3376 1.5248 1.9061 1.8628 7.5378 

 61.9108 63.9184 2.0076 1.8548 1.7905 7.2906 

 57.1908 54.5304 2.6604 1.7526 1.669 6.8432 

 51.298 48.8024 2.4956 1.6747 1.5898 6.529 

 46.2408 47.4668 1.226 1.5866 1.6002 6.3736 

 45.2508 43.73 1.5208 1.5164 1.5384 6.1096 

15 99.8272 98.094 1.7332 1.982 1.9166 7.7972 

 91.3728 93.668 2.2952 1.9527 1.9542 7.8138 

 96.5468 91.9844 4.5624 2.0929 1.9187 8.0232 

 93.1012 94.0712 0.97 1.9574 1.9689 7.8526 

 91.5664 93.9976 2.4312 2.0194 2.037 8.1128 

 91.5092 86.1528 5.3564 1.9662 1.8612 7.6548 

 89.2668 90.5608 1.294 1.9327 1.9796 7.8246 

16 1.27 1.3692 0.0992 0.0089 0.0097 0.0372 

 1.6432 1.7532 0.11 0.0097 0.0089 0.0372 

 1.8872 1.9816 0.0944 0.0101 0.0101 0.0404 

 2.1248 2.2456 0.1208 0.012 0.0122 0.0484 

 2.344 2.4932 0.1492 0.0139 0.0131 0.054 

 2.5616 2.7444 0.1828 0.0147 0.0145 0.0584 

 2.804 2.9348 0.1308 0.0166 0.0161 0.0654 

17 5.1052 6.7952 1.69 0.4986 0.6275 2.2522 

 2.5928 3.2828 0.69 0.0843 0.2107 0.59 

 2.7972 3.2236 0.4264 0.0261 0.1867 0.4256 

 3.1904 3.3688 0.1784 0.0263 0.0193 0.0912 

 3.5632 3.7288 0.1656 0.0249 0.0215 0.0928 

 3.9256 4.14 0.2144 0.0246 0.0243 0.0978 

 4.308 4.4488 0.1408 0.0278 0.0271 0.1098 

18 77.5112 80.3436 2.8324 1.9155 1.9427 7.7164 

 58.5388 63.0164 4.4776 1.7251 1.7697 6.9896 

 52.0572 52.3544 0.2972 1.713 1.6894 6.8048 

 47.9748 42.0432 5.9316 1.644 1.4417 6.1714 

 41.8172 38.6192 3.198 1.4844 1.4458 5.8604 

 38.9652 38.2904 0.6748 1.4425 1.4501 5.7852 

 38.5532 37.0436 1.5096 1.4433 1.3955 5.6776 
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B.  ATFS GIVEN TRUE SIGNAL 

 ATFSGivenTrue  se  

Case MEWMA MCUSUM Difference MEWMA MCUSUM widths 

1 2.0428 2.1473 0.1045 0.013 0.0142 0.0544 

 2.7919 2.9647 0.1728 0.0178 0.018 0.0716 

 3.4441 3.5574 0.1133 0.0224 0.0225 0.0898 

 3.9659 4.2029 0.237 0.0267 0.0268 0.107 

 4.4952 4.7645 0.2693 0.0311 0.0311 0.1244 

 5.016 5.2394 0.2234 0.0353 0.0348 0.1402 

 5.5556 5.7801 0.2245 0.0402 0.0385 0.1574 

2 2.1316 2.23 0.0984 0.0282 0.0299 0.1162 

 3.0286 3.2235 0.1949 0.0381 0.0371 0.1504 

 3.7889 4.1319 0.343 0.0445 0.0435 0.176 

 4.6388 4.9258 0.287 0.0492 0.049 0.1964 

 5.2886 5.4955 0.2069 0.0586 0.0565 0.2302 

 5.9098 6.1953 0.2855 0.061 0.0654 0.2528 

 6.4868 6.7647 0.2779 0.0715 0.0677 0.2784 

3 2.1289 2.0621 0.0668 0.051 0.059 0.22 

 3.0814 3.1544 0.073 0.0757 0.0756 0.3026 

 4.0849 4.1744 0.0895 0.0875 0.0879 0.3508 

 4.7457 4.8513 0.1056 0.0975 0.1005 0.396 

 5.4828 5.8252 0.3424 0.1195 0.1083 0.4556 

 6.1855 6.4814 0.2959 0.1241 0.1269 0.502 

 6.7635 7.128 0.3645 0.1464 0.1394 0.5716 

4 1.3208 1.4552 0.1344 0.0093 0.01 0.0386 

 1.6812 1.8076 0.1264 0.0098 0.0089 0.0374 

 1.9208 2.0544 0.1336 0.0112 0.0108 0.044 

 2.1808 2.356 0.1752 0.0133 0.0128 0.0522 

 2.4008 2.6268 0.226 0.0149 0.0143 0.0584 

 2.6804 2.822 0.1416 0.0167 0.0157 0.0648 

 2.8436 3.0804 0.2368 0.0187 0.0178 0.073 

5 1.8415 1.9393 0.0978 0.0099 0.0102 0.0402 

 2.3717 2.5781 0.2064 0.0148 0.0145 0.0586 

 2.8832 3.0646 0.1814 0.0181 0.0177 0.0716 

 3.2758 3.5042 0.2284 0.0217 0.0211 0.0856 

 3.6771 3.9305 0.2534 0.0254 0.0239 0.0986 

 4.0627 4.3407 0.278 0.0289 0.0284 0.1146 

 4.4158 4.72 0.3042 0.0328 0.0322 0.13 

6 2.0463 2.1801 0.1338 0.023 0.0257 0.0974 

 2.9717 3.2237 0.252 0.0323 0.0337 0.132 

 3.725 3.8873 0.1623 0.0387 0.0407 0.1588 

 4.4136 4.7293 0.3157 0.0451 0.0448 0.1798 

 5.0293 5.3254 0.2961 0.0527 0.0507 0.2068 

 5.5099 5.8118 0.3019 0.0591 0.0554 0.229 

 6.126 6.5213 0.3953 0.065 0.0644 0.2588 



 66 

7 2.0375 2.1477 0.1102 0.0136 0.014 0.0552 

 2.7822 2.9823 0.2001 0.0172 0.0178 0.07 

 3.4135 3.5706 0.1571 0.0215 0.0217 0.0864 

 3.9737 4.1832 0.2095 0.0249 0.0264 0.1026 

 4.5414 4.7269 0.1855 0.0288 0.0294 0.1164 

 4.9561 5.2002 0.2441 0.034 0.0324 0.1328 

 5.4182 5.6285 0.2103 0.0367 0.0373 0.148 

8 2.1323 2.2469 0.1146 0.0274 0.0297 0.1142 

 3.1185 3.2619 0.1434 0.0359 0.0376 0.147 

 3.9804 4.1874 0.207 0.0416 0.0421 0.1674 

 4.7237 4.9505 0.2268 0.0479 0.0461 0.188 

 5.4513 5.6695 0.2182 0.0509 0.0521 0.206 

 6.1877 6.2931 0.1054 0.059 0.0608 0.2396 

 6.6959 6.9484 0.2525 0.0654 0.064 0.2588 

9 2.0286 2.22 0.1914 0.0518 0.0597 0.223 

 3.0428 3.2604 0.2176 0.075 0.077 0.304 

 4.0574 4.1901 0.1327 0.0844 0.0907 0.3502 

 4.9158 5.2262 0.3104 0.1005 0.0973 0.3956 

 5.6027 5.9913 0.3886 0.117 0.1054 0.4448 

 6.6641 6.5573 0.1068 0.1157 0.1186 0.4686 

 7.1806 7.5783 0.3977 0.1335 0.1329 0.5328 

10 1.2712 1.3896 0.1184 0.0089 0.0098 0.0374 

 1.6632 1.7728 0.1096 0.0097 0.0088 0.037 

 1.8676 1.9936 0.126 0.0103 0.0099 0.0404 

 2.1184 2.268 0.1496 0.0125 0.0122 0.0494 

 2.3628 2.5192 0.1564 0.0137 0.0131 0.0536 

 2.5608 2.758 0.1972 0.0149 0.015 0.0598 

 2.8248 2.9648 0.14 0.0164 0.0165 0.0658 

11 1.8542 1.9381 0.0839 0.0092 0.0093 0.037 

 2.3926 2.5206 0.128 0.0133 0.0133 0.0532 

 2.7924 2.9619 0.1695 0.0163 0.0163 0.0652 

 3.1884 3.3847 0.1963 0.0193 0.0191 0.0768 

 3.5514 3.7419 0.1905 0.0225 0.0221 0.0892 

 3.9268 4.1216 0.1948 0.0255 0.0249 0.1008 

 4.2796 4.4968 0.2172 0.0281 0.0287 0.1136 

12 2.0908 2.2081 0.1173 0.024 0.0265 0.101 

 3.1075 3.2184 0.1109 0.0305 0.0312 0.1234 

 3.8395 4.0601 0.2206 0.0349 0.0366 0.143 

 4.5533 4.8208 0.2675 0.0391 0.041 0.1602 

 5.2176 5.5366 0.319 0.0465 0.0469 0.1868 

 5.8867 6.0912 0.2045 0.0523 0.053 0.2106 

 6.3839 6.6965 0.3126 0.0568 0.0561 0.2258 

13 2.0533 2.1485 0.0952 0.0129 0.0139 0.0536 

 2.8074 2.9363 0.1289 0.0174 0.0183 0.0714 

 3.3994 3.5796 0.1802 0.0218 0.0211 0.0858 

 3.9742 4.0873 0.1131 0.0254 0.0253 0.1014 

 4.4409 4.6069 0.166 0.029 0.0278 0.1136 

 4.9128 5.1843 0.2715 0.0327 0.0318 0.129 

 5.3764 5.5399 0.1635 0.0371 0.036 0.1462 
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14 2.1371 2.25 0.1129 0.0279 0.0309 0.1176 

 3.1265 3.386 0.2595 0.0331 0.0363 0.1388 

 3.9709 4.2962 0.3253 0.0409 0.0416 0.165 

 4.8069 5.0246 0.2177 0.0468 0.0465 0.1866 

 5.4837 5.7204 0.2367 0.0506 0.0532 0.2076 

 6.1893 6.4647 0.2754 0.0552 0.0572 0.2248 

 6.7752 7.0946 0.3194 0.0641 0.0641 0.2564 

15 2.0821 2.1357 0.0536 0.0516 0.0651 0.2334 

 3.1589 3.2686 0.1097 0.0666 0.0734 0.28 

 4.1111 4.2828 0.1717 0.0898 0.0871 0.3538 

 4.8398 5.2662 0.4264 0.0998 0.0966 0.3928 

 5.7233 6.1059 0.3826 0.1095 0.1122 0.4434 

 6.2975 6.5563 0.2588 0.1172 0.1216 0.4776 

 7.2069 7.3369 0.13 0.1253 0.1265 0.5036 

16 1.27 1.3692 0.0992 0.0089 0.0097 0.0372 

 1.6432 1.7532 0.11 0.0097 0.0089 0.0372 

 1.8872 1.9816 0.0944 0.0101 0.0101 0.0404 

 2.1248 2.2456 0.1208 0.012 0.0122 0.0484 

 2.344 2.4932 0.1492 0.0139 0.0131 0.054 

 2.5616 2.7444 0.1828 0.0147 0.0145 0.0584 

 2.804 2.9348 0.1308 0.0166 0.0161 0.0654 

17 1.8381 1.9258 0.0877 0.0092 0.0095 0.0374 

 2.3647 2.5127 0.148 0.0132 0.0131 0.0526 

 2.7682 2.9471 0.1789 0.0161 0.0158 0.0638 

 3.1725 3.3688 0.1963 0.0192 0.0193 0.077 

 3.5514 3.7288 0.1774 0.0219 0.0215 0.0868 

 3.9256 4.14 0.2144 0.0246 0.0243 0.0978 

 4.308 4.4488 0.1408 0.0278 0.0271 0.1098 

18 2.1132 2.1841 0.0709 0.0242 0.0256 0.0996 

 3.0807 3.1885 0.1078 0.0294 0.0309 0.1206 

 3.8975 4.0505 0.153 0.0352 0.035 0.1404 

 4.6541 4.8525 0.1984 0.0408 0.0394 0.1604 

 5.2329 5.4561 0.2232 0.0465 0.0445 0.182 

 5.9501 6.1798 0.2297 0.0526 0.0505 0.2062 

 6.4401 6.6842 0.2441 0.0574 0.0574 0.2296 
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C.  PERCENT MISS 

 PercentMiss  se  

Case MEWMA MCUSUM Difference MEWMA MCUSUM widths 

1 0.3172 0.3836 0.0664 0.0093 0.0097 0.038 

 0.164 0.1948 0.0308 0.0074 0.0079 0.0306 

 0.1012 0.1108 0.0096 0.006 0.0063 0.0246 

 0.074 0.0832 0.0092 0.0052 0.0055 0.0214 

 0.05 0.064 0.014 0.0044 0.0049 0.0186 

 0.0524 0.0444 0.008 0.0045 0.0041 0.0172 

 0.0496 0.0468 0.0028 0.0043 0.0042 0.017 

2 0.7872 0.8 0.0128 0.0082 0.008 0.0324 

 0.678 0.694 0.016 0.0093 0.0092 0.037 

 0.6096 0.6028 0.0068 0.0098 0.0098 0.0392 

 0.5592 0.5528 0.0064 0.0099 0.0099 0.0396 

 0.5204 0.5068 0.0136 0.01 0.01 0.04 

 0.4812 0.4776 0.0036 0.01 0.01 0.04 

 0.4864 0.4644 0.022 0.01 0.01 0.04 

3 0.91 0.9292 0.0192 0.0057 0.0051 0.0216 

 0.8772 0.8912 0.014 0.0066 0.0062 0.0256 

 0.854 0.8532 0.0008 0.0071 0.0071 0.0284 

 0.8128 0.8252 0.0124 0.0078 0.0076 0.0308 

 0.802 0.794 0.008 0.008 0.0081 0.0322 

 0.7952 0.7848 0.0104 0.0081 0.0082 0.0326 

 0.77 0.7656 0.0044 0.0084 0.0085 0.0338 

4 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

5 0.0588 0.1108 0.052 0.0047 0.0063 0.022 

 0.0164 0.0292 0.0128 0.0025 0.0034 0.0118 

 0.0068 0.0092 0.0024 0.0016 0.0019 0.007 

 0.0052 0.006 0.0008 0.0014 0.0015 0.0058 

 0.004 0.004 0 0.0013 0.0013 0.0052 

 0.004 0.0044 0.0004 0.0013 0.0013 0.0052 

 0.0044 0.0028 0.0016 0.0013 0.0011 0.0048 

6 0.6892 0.7468 0.0576 0.0093 0.0087 0.036 

 0.6044 0.6424 0.038 0.0098 0.0096 0.0388 

 0.504 0.5492 0.0452 0.01 0.01 0.04 

 0.4836 0.4888 0.0052 0.01 0.01 0.04 

 0.454 0.4616 0.0076 0.01 0.01 0.04 

 0.4336 0.424 0.0096 0.0099 0.0099 0.0396 

 0.4284 0.4284 0 0.0099 0.0099 0.0396 
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7 0.2848 0.3636 0.0788 0.009 0.0096 0.0372 

 0.1168 0.1648 0.048 0.0064 0.0074 0.0276 

 0.0656 0.0796 0.014 0.005 0.0054 0.0208 

 0.0432 0.0456 0.0024 0.0041 0.0042 0.0166 

 0.0248 0.0276 0.0028 0.0031 0.0033 0.0128 

 0.0256 0.0232 0.0024 0.0032 0.003 0.0124 

 0.0224 0.016 0.0064 0.003 0.0025 0.011 

8 0.752 0.8088 0.0568 0.0086 0.0079 0.033 

 0.6556 0.6732 0.0176 0.0095 0.0094 0.0378 

 0.5516 0.5688 0.0172 0.0099 0.0099 0.0396 

 0.4876 0.4992 0.0116 0.01 0.01 0.04 

 0.4416 0.4432 0.0016 0.0099 0.0099 0.0396 

 0.4268 0.4104 0.0164 0.0099 0.0098 0.0394 

 0.4068 0.38 0.0268 0.0098 0.0097 0.039 

9 0.916 0.94 0.024 0.0055 0.0047 0.0204 

 0.8784 0.894 0.0156 0.0065 0.0062 0.0254 

 0.8328 0.8548 0.022 0.0075 0.007 0.029 

 0.8148 0.8196 0.0048 0.0078 0.0077 0.031 

 0.7956 0.7708 0.0248 0.0081 0.0084 0.033 

 0.7416 0.766 0.0244 0.0088 0.0085 0.0346 

 0.7408 0.7496 0.0088 0.0088 0.0087 0.035 

10 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

11 0.034 0.0628 0.0288 0.0036 0.0049 0.017 

 0.0056 0.008 0.0024 0.0015 0.0018 0.0066 

 0.002 0.0024 0.0004 0.0009 0.001 0.0038 

 0 0.0008 0.0008 0 0.0006 0.0012 

 0.0004 0.0004 0 0.0004 0.0004 0.0016 

 0.0004 0 0.0004 0.0004 0 0.0008 

 0 0 0 0 0 0 

12 0.7004 0.7424 0.042 0.0092 0.0087 0.0358 

 0.5496 0.5916 0.042 0.01 0.0098 0.0396 

 0.4592 0.474 0.0148 0.01 0.01 0.04 

 0.3848 0.4084 0.0236 0.0097 0.0098 0.039 

 0.3492 0.3612 0.012 0.0095 0.0096 0.0382 

 0.3436 0.3336 0.01 0.0095 0.0094 0.0378 

 0.3196 0.32 0.0004 0.0093 0.0093 0.0372 

13 0.2644 0.348 0.0836 0.0088 0.0095 0.0366 

 0.1216 0.1456 0.024 0.0065 0.0071 0.0272 

 0.0556 0.0628 0.0072 0.0046 0.0049 0.019 

 0.0392 0.0332 0.006 0.0039 0.0036 0.015 

 0.0228 0.018 0.0048 0.003 0.0027 0.0114 

 0.014 0.0124 0.0016 0.0023 0.0022 0.009 

 0.0116 0.0116 0 0.0021 0.0021 0.0084 
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14 0.7724 0.8064 0.034 0.0084 0.0079 0.0326 

 0.6236 0.6456 0.022 0.0097 0.0096 0.0386 

 0.5332 0.5624 0.0292 0.01 0.0099 0.0398 

 0.4572 0.4644 0.0072 0.01 0.01 0.04 

 0.4128 0.4192 0.0064 0.0098 0.0099 0.0394 

 0.366 0.3604 0.0056 0.0096 0.0096 0.0384 

 0.3524 0.3488 0.0036 0.0096 0.0095 0.0382 

15 0.922 0.944 0.022 0.0054 0.0046 0.02 

 0.854 0.8764 0.0224 0.0071 0.0066 0.0274 

 0.8416 0.8444 0.0028 0.0073 0.0072 0.029 

 0.7928 0.8152 0.0224 0.0081 0.0078 0.0318 

 0.76 0.7772 0.0172 0.0085 0.0083 0.0336 

 0.7432 0.7512 0.008 0.0087 0.0086 0.0346 

 0.7216 0.7352 0.0136 0.009 0.0088 0.0356 

16 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

17 0.0316 0.0516 0.02 0.0035 0.0044 0.0158 

 0.004 0.0092 0.0052 0.0013 0.0019 0.0064 

 0.0008 0.0028 0.002 0.0006 0.0011 0.0034 

 0.0004 0 0.0004 0.0004 0 0.0008 

 0.0004 0 0.0004 0.0004 0 0.0008 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

18 0.7032 0.7436 0.0404 0.0091 0.0087 0.0356 

 0.5388 0.582 0.0432 0.01 0.0099 0.0398 

 0.446 0.4536 0.0076 0.0099 0.01 0.0398 

 0.3964 0.3872 0.0092 0.0098 0.0097 0.039 

 0.3524 0.3352 0.0172 0.0096 0.0094 0.038 

 0.3272 0.3148 0.0124 0.0094 0.0093 0.0374 

 0.3192 0.3008 0.0184 0.0093 0.0092 0.037 
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